

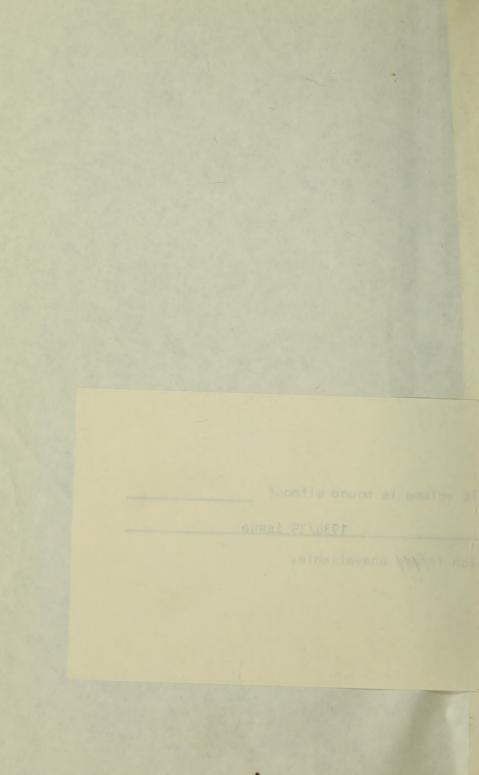
Digitized by the Internet Archive in 2013

http://archive.org/details/schoolofminesann19univ

The University of Minnesota Bulletin

School of Mines

דויד זה אמאמתון זויד


S

This volume is bound without

1934/35 issue

which is and unavailable.

MINNBAPOLIS, MINN.

M66wZmi 1911/12

The

University of Minnesota Bulletin

School of Mines

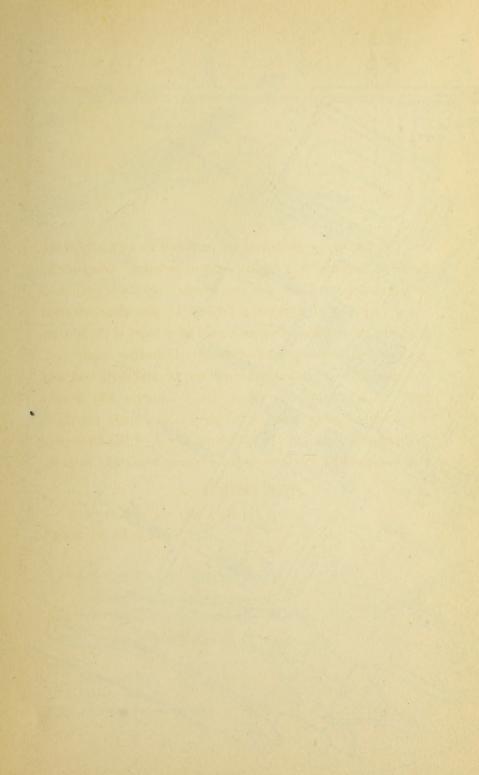
1911-1912

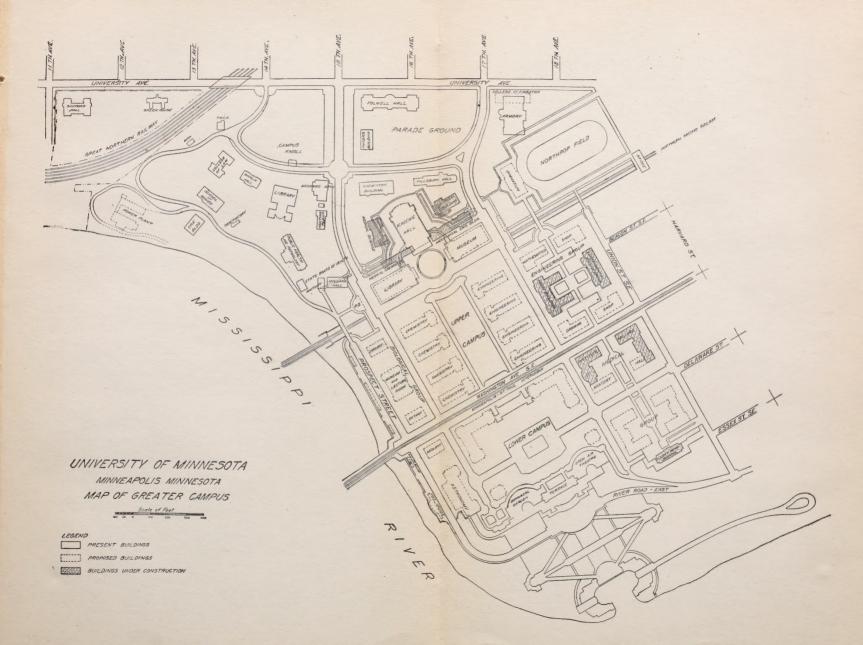
Volume XIV

May 1911

No. 6

דוור זה עראמין שור


FEG. 2.6 1931


and the reader in a S.

Entered at the Postoffice in Minneapolis as second-class matter MINNEAPOLIS, MINN. The University catalogues are published by authority of the Board of Regents, as a regular series of bulletins. One bulletin for each college and one for the summer session is published every year and in addition a bulletin of general information outlining the entrance requirements of all colleges of the University, and embodying such items as University equipment, organizations and publications, expenses of students, loan and trust funds, scholarships, prizes, etc. Bulletins will be sent gratuitously, postage paid, to all persons who apply for them. In calling for bulletins, the college or school of the University concerning which information is desired should be stated. Address,

THE REGISTRAR,

The University of Minnesota, Minneapolis, Minnesota.

CALENDAR FOR 1911-1912

]	JULY			
S.	M.	Т.	W.	Τ.	F.	S.
· · · 2		• • 4		· · 6	• • • 7	1 8
ő	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31			• •	• •	
			UGU			
	• •	1	2	3	4	5
6	7	8	9	10	11	12
13 20	14 21	15 22	16 23	$\frac{17}{24}$	18 25	19 26
27	28	22	30	31	45	20
		SEP	TEM	BER		
					1	2
:3	4	5	6	7	8	9
10	11	12	13.	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
· · ·	••				•••	
			TOB			
1	2	3	4	5	6	7
8 15	9 16	10 17	11 18	12 19	13 20	14 21
22	23	24	25	26	27	28
29	30	31				
		NO		BER		
• •	• •	• •	1	2	3	4
5	6	7	8	9	10	11
12 19	13	14 21	15 22	16 23	$\frac{17}{24}$	18 25
26	20 27	21 28	22	23 30	24	25
20	21		23			
			CEM	BER		
			CLODE.	JUN	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31	• •	• •	•••	••	• •	• •

				1912			
-					RY		
	S.	M.	Τ,	W.	Τ.	F.	S.
		1	2 9	3	4 11	5 12	6 13
	14	15	16	17	18	10	20
	21	22	2.3	24	25	19 26	27
	28	29	30	31			
						•••	
			FEH	BRU	ARY		
					1	2 9 16 23	3
	4	5	6	7	8	9	10
	11	12	13	14	15	16	17
	18	19	20	21	22	23	24
	25	26	27	28	29		
			• •		29	• •	••
			M	ARC	2 H 7		
İ						1	2 9
	3	4	5	6	7	8	9
	10	11	12	13	14	15	16
	17	18	19	20	21	22 29	23
	24	25	26	27	28	29	30
	$\frac{31}{}$	• •	• •	• •	• •		•••
			ŀ	PRI	L	5 12 19 26	
		1	2	3	4	5	6
	1	8	9	10	11	12	13
	14	15	10	17	18	19	20
	21 28	22	20	24	25	20	21
	20	49	30	•••	•••	•••	•••
-		•••		37 4 3	7	3 10 17 24 31	<u>···</u>
				MAI	<u> </u>		
	5	• • •	•••	1	2	3	4
	5	12	1 1	15	16	10	11 18
	12	13	14	15	10	1/	25
	26	20	21	20	20	31	25
	20	21	20	29	50	51	•••
	<u>··</u>			TITAT		••	
				JUNI		··· 7 14 21	
	1		· .	÷			g I
	ő	10	11	12	13	14	15
	16	17	18	19	20	21	22
	23	24	25	19 26	20 27	21 28	29
	30					• •	• •
1		-	-		-		

University Calendar

1911-1912

THE UNIVERSITY YEAR

The University year covers a period of thirty-eight weeks, beginning on the second Tuesday in September. Commencement Day is always the second Thursday in June. 1911

1911			
September	5	Tuesday	Registration closes except for new students
Sept.	5-12	Week	Fees payable except for new students
Sept.	12-18	Week	Entrance examinations, freshman
•			registration and payment of fees
Sept.	13-19	Week	Military encampment of cadets
September	20	Wednesday	First semester begins
September	26	Monday	University Council meeting
October	2	Monday	School of Agriculture session begins
October	5	Thursday	Board of Regents meeting
November	29	Wednesday	Thanksgiving recess begins 5:40 P. M.
December	4	Monday	Thanksgiving recess ends 8:30 A. M.
December	4	Monday	University Council meeting
December	12	Tuesday	Board of Regents meeting
December	22	Friday	Christmas vacation begins 5:40 P. M.
1912			
January	9	Tuesday	Christmas vacation ends 8:30 A. M.
January	23	Tuesday	Registration for second semester closes
January	29	Monday	Final examinations begin
January	30	Tuesday	Payment of fees for second semester closes
February	7	Wednesday	Second semester begins
February	12	Monday	Lincoln's Birthday: holiday
February	17	Saturday	First semester class reports due
February	22	Thursday	Washington's Birthday: holiday
March	20	Wednesday	School of Agriculture closes
March	30	Saturday	Easter recess begins 5:40 P. M.
April	8	Monday	Easter recess ends 8:30 A. M.
April	22	Monday	University Council meeting
May	2	Thursday	Board of Regents meeting

n Res Ini 1910 1 1753 91

May	23	Thursday	Final examinations begin
May	30	Thursday	Decoration Day: holiday
June	8	Saturday	Second semester closes
June	9	Sunday	Baccalaureate service
June	10	Monday	Senior class day exercises
June	11	Tuesday	Phi Beta Kappa address
June	12	Wednesday	Alumni Day
June	13	Thursday	Fortieth Annual Commencement
June	14	Friday	Summer vacation begins

The University year for 1912-13 will begin Monday, September 10

PROGRAM OF ENTRANCE EXAMINATIONS

1911-12

When entrance examinations are required this schedule will be followed:

June June	1	Thursday Friday		Elementary and Higher Algebra Plane and Solid Geometry
September :		Tuesday		Astronomy
September .	12	Iucsuay	7 II. MI.	Botany
				Geology
				Chemistry
				Physiography
				Zoology
			2 P. M.	American Government
				History
				Economics
				Physics
				Commercial Geography
September	13	Wednesday	9 A. M.	English
			2 P. M.	German
				French
				Latin
				Scandinavian
September	14	Thursday	9 A. M.	Elementary Algebra
				Higher Algebra
September	15	Friday		Plane Geometry
r				Solid Geometry
			TAT . TAT .	bond acometry

All candidates for examinations should report at the scheduled time in Room 205, Library Building, except in the case of mathematics.

Examinations in mathematics are held in Room 24, School of Mines Building.

PROGRAM-SUPPLEMENTARY EXAMINATIONS

Sept.	12	Tuesday	2-5	Mining Engineering Subjects
Sept.	13	Wednesday	9-12	Chemistry
Sept.	13	Wednesday	2-5	Drawing and Descriptive Geometry
				Mechanical Engineering Subjects
Sept.	14	Thursday	9- 12	Metallurgical Subjects
				Physics
Sept.	15	Friday	9-12	Electrical Engineering Subjects
			2-5	Geology and Mineralogy
Sept.	14	Thursday	9- 12 9-12	Mechanical Engineering Subjects Metallurgical Subjects Physics Electrical Engineering Subjects

The University

THE UNIVERSITY OF MINNESOTA comprises the following named schools colleges, and departments: THE COLLEGE OF SCIENCE, LITERATURE, AND THE ARTS THE COLLEGE OF ENGINEERING AND THE MECHANIC ARTS THE DEPARTMENT OF AGRICULTURE, including-THE COLLEGE OF AGRICULTURE THE COLLEGE OF FORESTRY THE SCHOOL OF AGRICULTURE THE DAIRY SCHOOL THE SHORT COURSE FOR FARMERS THE SHORT COURSE FOR TEACHERS THE LIDRARY OF THE THE SCHOOL OF TRACTION ENGINEERING THE SCHOOL OF AGRICULTURE, CROOKSTON FFB 26 1931 THE SCHOOL OF AGRICULTURE, MORRIS THE EXPERIMENT STATIONS, including-THE MAIN STATION AT ST. ANTHONY PARKAGE THE SUB-STATION AT CROOKSTON THE SUB-STATION AT GRAND RAPIDS THE COLLEGE OF LAW THE COLLEGE OF MEDICINE AND SURGERY, including-THE TRAINING SCHOOL FOR NURSES THE COLLEGE OF DENTISTRY THE COLLEGE OF PHARMACY THE SCHOOL OF MINES THE SCHOOL OF ANALYTICAL AND APPLIED CHEMISTRY THE COLLEGE OF EDUCATION THE GRADUATE SCHOOL

THE GEOLOGICAL AND NATURAL HISTORY SURVEY

Bulletins of these schools, colleges, and departments may be obtained upon application to the University Registrar.

5

The Board of Regents

The HON. JOHN LIND, MINNEAPOLIS	. 1914
GEORGE EDGAR VINCENT, Ph. D., LL. D., MINNEAPOLIS The President of the University	Ex-Officio
The HON. ADOLPH O. EBERHART, MANKATO . The Governor of the State	Ex-Officio
The HON. C. G. SCHULZ, ST. PAUL	
The HON. W. J. MAYO, Rochester	. 1913
The HON. MILTON M. WILLIAMS, LITTLE FALLS	. 1913
The HON. HENRY B. HOVLAND, DULUTH	. 1914
The HON. A. E. RICE, WILLMAR	. 1915
The HON. CHARLES L. SOMMERS, ST. PAUL	. 1915
The HON. B. F. NELSON, MINNEAPOLIS	. 1916
The HON. PIERCE BUTLER, ST. PAUL	. 1916
The HON. CHARLES A. SMITH, MINNEAPOLIS	. 1916

C. D. DECKER, MINNEAPOLIS, Secretary of the Board.

Executive Officers

THE UNIVERSITY

GEORGE EDGAR VINCENT, Ph. D., LL. D., PRESIDENT ERNEST B. PIERCE, B. A., REGISTRAR JAMES T. GEROULD, B. A., LIBRARIAN CALVIN D. DECKER, PURCHASING AGENT JOSEPH D. BREN, TREASURER

THE COLLEGES

- JOHN F. DOWNEY, M. A., C. E., DEAN OF THE COLLEGE OF SCIENCE, LITERATURE, AND THE ARTS
- FRANCIS C. SHENEHON, C. E., DEAN OF THE COLLEGE OF ENGINEER-ING AND THE MECHANIC ARTS
- ALBERT F. WOODS, M. A., DEAN AND DIRECTOR OF THE DEPARTMENT OF AGRICULTURE
- *WILLIAM S. PATTEE, LL. D., DEAN OF THE COLLEGE OF LAW
- FRANK FAIRCHILD WESBROOK, M. A., M. D., C. M., DEAN OF THE College of Medicine and Surgery
- ALFRED OWRE, B. A., M. D., C. M., D. M. D., DEAN OF THE COLLEGE OF DENTISTRY
- FREDERICK J. WULLING, Phm. D., LL. M., DEAN OF THE COLLEGE OF PHARMACY
- WILLIAM R. APPLEBY, M. A., DEAN OF THE SCHOOL OF MINES
- GEORGE B. FRANKFORTER, M. A., Ph. D., DEAN OF THE SCHOOL OF CHEMISTRY
- GEORGE F. JAMES, Ph. D., DEAN OF THE COLLEGE OF EDUCATION
- HENRY T. EDDY, C. E., Ph. D., LL. D., DEAN OF THE GRADUATE School
- ADA L. COMSTOCK, M. A., DEAN OF WOMEN *Died April 4, 1911.

The University Council

At the regular meeting of the Board of Regents of the University May 31, 1905, a University Council was established according to the following plan:

I. The name of the body shall be the University Council. It shall consist of the President of the University, the Deans of the various colleges and schools, one elected representative from each college or school for each 400 students or major fraction thereof, and one representative of the General Alumni Association.

II. The elected members shall serve for a period of one year. They shall be chosen from the various faculties at the time of the selection of standing committees. The representative of the General Alumni Association shall be chosen by that body at its annual meeting from among the alumni who are not members of the University.

III. The Council shall be authorized to-

a) Appoint the following committees or the faculty representation thereon:

The University auditing committee

The University press committee

The committee on athletics

The committee on University relations to other institutions of higher learning

The committee on health and sanitation

The committee on commencement and other University functions

The committee on catalogue, programs and courses of study

The committee on student entertainments and social affairs

And such other committees as the general University interests may require

b) Receive reports from such committees and to make such recommendations as may be required.

c) Consider and act upon any matter of general University interest beyond the province of a single faculty which may be referred to it by the President of the University or any Faculty.

IV. The Council shall hold stated meetings upon the first Monday of October, December, April, and June, and such other meetings as the President of the University may call.

Representatives to the Council

The University GEORGE EDGAR VINCENT. PRESIDENT The College of Science, Literature, and the Arts PROFESSOR H., F. NACHTRIEB DEAN JOHN F. DOWNEY PROFESSOR J. C. HUTCHINSON PROFESSOR CARL SCHLENKER PROFESSOR NORMAN WILDE The College of Engineering and the Mechanic Arts DEAN FRANCIS C. SHENEHON PROFESSOR GEORGE D. SHEPARDSON The College and School of Agriculture DEAN ALBERT F. WOODS PROFESSOR JOHN T. STEWART PROFESSOR EDWARD M. FREEMAN The College of Law ACTING DEAN ADAM C. HICKMAN PROFESSOR HENRY J. FLETCHER The College of Medicine and Surgery DEAN F. F. WESBROOK PROFESSOR THOMAS G. LEE The College of Dentistry PROFESSOR RICHARD OLDING BEARD DEAN ALFRED OWRE The College of Pharmacy DEAN FREDERICK JOHN WULLING The School of Mines DEAN WILLIAM R. APPLEBY The School of Chemistry DEAN GEORGE B. FRANKFORTER The College of Education DEAN GEORGE F. JAMES The Graduate School DEAN HENRY T. EDDY The Dean of Women ADA L. COMSTOCK The University Library JAMES T. GEROULD The General Alumni Association DAVID P. JONES 9

University Council Committees

The	University Auditing Committee
	PROFESSORS SIGERFOOS, FLETCHER, MITCHELL, STEWART
The	Committee on Athletics
	PROFESSORS PAIGE, HARDING, D. P. JONES, LITZENBERG, ROB-
	INSON
The	Committee on Grounds and Sanitation
	PROFESSORS WESBROOK, BASS, SHENEHON, FLATHER, FRANK-
	forter, Woods, Clements
The	Press Committee
	PROFESSORS THOMAS, BEACH, JOHN ZELENY, BAUER, MINER
The	Committee on Commencement and other University Functions
	PROFESSORS NACHTRIEB, BUTTS, JAMES, SCHLENKER, DR. SCOTT.
	Wilde, Washburn, Owre, Scott
The	Committee on Student Entertainments and Social Affairs
	PROFESSORS PIKE, COMSTOCK, COOKE, BUTTS, SIDENER, FREE-
	MAN, FORD
The	Committee on University Relations to other Institutions of Higher
	Learning
	PROFESSORS DOWNEY, BOTHNE, EDDY, JAMES, LEE, APPLEBY,
	Woods, Shepardson, Hutchinson
The	Committee on University Extension and University Lectures
	PROFESSORS JAMES, GRAY, HAECKER, JENKS, WULLING, BURTON,
	Johnston
The	Committee on the Library
	PROFESSORS EDDY, FLETCHER, GEROULD, REYNOLDS, SHENEHON,
	VAN BARNEVELD, WHITE, CRAIG, MULLIN

The School of Mines

FACULTY

CYRUS NORTHROP, LL. D., President Emeritus

GEORGE EDGAR VINCENT, Ph. D., LL. D., President

WILLIAM R. APPLEBY, M. A., Dean and Professor of Metallurgy

- CHARLES E. VAN BARNEVELD, B. A., Sc., E. M., Professor of Mining Engineering
- CHARLES W. BENTON, Litt. D., Professor of Romance Languages
- PETER CHRISTIANSON, B. S., E. M., Professor of Metallurgy
- ELTING H. COMSTOCK, M. S., Professor of Mechanics and Mathematics
- JOHN J. FLATHER, Ph. B., M. E., Professor of Mechanical Engineering
- GEORGE B. FRANKFORTER, Ph. D., Professor of Chemistry
- CHRISTOPHER W. HALL, M. A., Professor of Mineralogy and Geology
- WILLIAM H. KAVANAUGH, M. E., Professor of Experimental Engineering
- WILLIAM H. KIRCHNER, B. S., Professor of Drawing and Descriptive Geometry
- EDWARD P. MCCARTY, E. M., Professor of Mining
- JOHN G. MOORE, B. A., Professor of German
- LEVI B. PEASE, M. S., Professor of Metallurgy
- GEORGE D. SHEPARDSON, M. A., M. E., Professor of Electrical Engineering
- CHARLES F. SIDENER, B. S., Professor of Chemistry
- JOSEPH M. THOMAS, Ph. D., Professor of Rhetoric
- JOHN ZELENY, Ph. D., Professor of Physics
- FRANK F. GROUT, M. S., Assistant Professor of Mineralogy and Geology
- MERTON S. KINGSTON, E. M., Assistant Professor of Mining
- EDWIN M. LAMBERT, M. E., Assistant Professor of Mechanics and Mathematics

WILLIAM T. RYAN, E. E., Assistant Professor of Electrical Engineering

- S. CARL SHIPLEY, B. S., M. E., Assistant Professor of Machine Construction
- CHARLES F. SHOOP, B. S., Assistant Professor of Experimental Engineering
 - 11

THE UNIVERSITY OF MINNESOTA

INSTRUCTORS AND ASSISTANTS

OLIVER BOWLES, M. A., Instructor in Mineralogy and Geology LILLIAN COHEN, M. S., Instructor in Chemistry FRANCIS C. FRARY, M. S., Instructor in Chemistry ROBERT W. FRENCH, B. S., Instructor in Drawing WILLIAM F. HOLMAN, Ph. D., Instructor in Physics LOUIS W. MCKEEHAN, B. S., Instructor in Physics FRANKLIN R. MCMILLAN, C. E., Instructor in Drawing CARL M. MELOM, M. A., Instructor in Spanish CHARLES W. NICHOLS, M. A., Instructor in Rhetoric PETER PETERSON, Instructor in Foundry Practice EDWARD QUIGLEY, Instructor in Forge Work WILLIAM H. RICHARDS, Instructor in Carpentry FRANK B. ROWLEY, B. S., M. E., Instructor in Drawing EDGAR K. SOPER, B. A., Instructor in Economic Geology

WINIFRED GREGORY, Librarian

Admission

The courses leading to the degrees of E. M. and Met. E. may be completed in either four or five years. The course leading to the degree of E. M. (Geology) may be completed in five years.

Students may enter the School of Mines without preparation in higher algebra and solid geometry. Such students must enter the fiveyear courses.

Students who enter the four-year courses with higher algebra and solid geometry must pass the entrance examinations in mathematics given by the School. State High School Board certificates will be accepted for all subjects except mathematics.

It is recommended that students who come poorly prepared in mathematics enter the five-year courses.

Examinations for admission in subjects other than mathematics will be held at the beginning of the year. Examinations in mathematics are held in June and September. See calendar and program of examinations.

No senior will be registered for first semester's work after September 12, 1911.

No other students will be registered for first semester's work after September 30, 1911, nor any student for second semester's work after February 17, 1912.

All applicants should present themselves to the Dean of the School of Mines, Room 25, School of Mines Building, who will furnish them with application blanks and directions covering examinations and registration.

Women will not be admitted to any course offered in the School of Mines.

GENERAL REGULATIONS GOVERNING ADMISSION

- I. Students will be admitted to the freshman class on passing the regular entrance examinations.
- II. No student will be admitted if conditioned in more than three half-year subjects, or their equivalent. No conditions, however, in entrance mathematics shall be allowed except upon special permission of the Department of Mathematics.

III. Graduates of any Minnesota State high school will be admitted to the five-year courses without examination, or to the four-year courses with examination in mathematics, provided—

That the school maintain a full four-year course of high

(1) That the school maintain a full four-year course of high school work.

(2) That the applicant present to the Registrar the principal's certificate showing the satisfactory completion of all studies required for admission to the desired University course.

- IV. Graduates of Minnesota State high schools who are deficient in not more than three half-year subjects or their equivalent, may be excused from entrance examinations in such subjects as the Enrollment Committee may decide upon; such candidates should present themselves to the committee not later than Tuesday of examination week.
- V. Graduates of Minnesota State high schools whose principal's certificate shows them to be deficient in more chan three half-year subjects or their equivalent, even though they have made such additional preparation as they deem necessary, must take, nevertheless, the regular entrance examination in all subjects, as provided in sections I. and II., unless excused by vote of the faculty; and persons wishing to present reasons for such excuse should report to the Enrollment Committee not later than Tuesday of examination week.
- VI. Graduates of the advanced courses of Minnesota normal schools will be admitted upon the same terms as graduates of State high schools.
- VII. Any Minnesota high school or academy not under supervision of the State High School Board, but requiring for graduation a four years' course, exclusive of the common school branches, conforming essentially in distribution of time to the entrance requirements of at least one of the University courses, will, upon application, be inspected by a committee, and, after favorable recommendation, may be accredited by the faculty in all respects as are the State high schools, provided—

(1) That the school be open to inspection at any time by the University.

(2) That it take such supplementary examinations as may be prescribed from time to time.

VIII. Graduates from schools in other states, whose diplomas admit to reputable colleges in the state in which the school is located, will be received subject to the regulations that apply to graduates of Minnesota State high schools.

14

IX. Applicants coming from schools not included in any of the above classes must take the regular entrance examinations or present State High School Board certificates.

In all cases the faculty reserves the right to require a student to take supplementary examinations if he does not sustain himself creditably in his course.

The Enrollment Committee will meet every day during the week commencing Tuesday, September 12th, in School of Mines Building, room 25, at 9 o'clock, a. m.

REQUIREMENTS FOR ADMISSION TO THE FIVE-YEAR COURSES

Required Subjects:

English			 	 *four credits
Elementary Algebra			 	 one credit
Plane Geometry .			 	 one credit
Electives	• •	••	 	 nine credits

REQUIREMENTS FOR ADMISSION TO THE FOUR-YEAR COURSES

Required Subjects:

English		 	 	 *four credits
Elementary Algel	bra	 	 	 one credi _t
Higher Algebra		 	 	 one-half credit
Plane Geometry		 	 	 one credi _t
Solid Geometry		 	 	 one-half credi _t
Electives		 	 	 eight credits

Electives (Eight credits must be selected from this list for the four-year courses and nine credits for the five-year courses.)

LATIN

Grammar, one credit Caesar, four books, one credit Cicero, six orations, one credit Virgil, six books, one credit

Greek

Grammar, one credit

Anabasis, four books, one credit

*Three credits will satisfy the English requirement when the applicant pre sents four credits in one foreign language. In this case a sufficient number of elect ves must be presented to make a total of fifteen entrance credits.

GERMAN Grammar, one credit Literature, one credit FRENCH Grammar, one credit Literature, one credit SPANISH Grammar, one credit Literature, one credit SCANDINAVIAN LANGUAGES Grammar, one credit Literature, one credit HISTORY Ancient, to Charlemagne, one credit Modern, from Charlemagne, one credit English, one-half credit Senior American, one-half credit AMERICAN GOVERNMENT, one-half credit ELEMENTARY ECONOMICS, one-half credit HISTORY OF COMMERCE, one-half credit COMMERCIAL GEOGRAPHY, one-half or one credit PHYSICS. one credit CHEMISTRY, one credit BOTANY, one-half or one credit ZOOLOGY, one-half or one credit ASTRONOMY, one-half credit GEOLOGY, one-half credit PHYSIOGRAPHY, one-half credit.

Not more than four credits are allowed in the following vocational subjects, including business subjects, manual subjects, domestic science, and agriculture.

BUSINESS SUBJECTS

Business Law, one-half credit Business Arithmetic, one-half credit Elementary Bookkeeping, one-half credit Advanced Bookkeeping and Business Practice, one credit Stenography and Typewriting, two credits

MANUAL SUBJECTS

- Freehand Drawing, two credits
- Mechanical Drawing, two credits Shop Work, two credits
- Modeling and Wood Carving, one credit

THE SCHOOL OF MINES

DOMESTIC ART AND SCIENCE, two credits

AGRICULTURE. One to four credits from schools receiving special state aid for agriculture, and also from other schools in which such course in agriculture is approved by the State High School Board, as fast as the said schools are prepared to offer work in agriculture.

DESCRIPTION OF SUBJECTS ACCEPTED FOR ADMISSION

A description of the subjects accepted for admission to the University will be found in the Bulletin of General Information, which will be sent to any address upon application to the Registrar, University of Minnesota, Minneapolis, Minnesota.

ADVANCED STANDING

The University accepts records from other colleges for credit to advanced standing. Such records are accepted as far as they are equivalent to the work in this University, subject to the approval of the departments concerned. In bringing records from other institutions, the certificates must be on the official blanks of the institution granting the certificate, and should show:

1. The subjects studied and ground covered.

2. The time spent upon each subject.

3. In case of laboratory subjects, a concise statement of work done.

4. The result—it is sufficient to state the subjects were creditably completed.

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrollment Committee.

DAILY ROUTINE

The daily session is divided into eight recitation periods of fifty minutes each, four in the morning and four in the afternoon. The morning session begins at 8:30 and closes at 12:35 o'clock. A general assembly of the faculty and students is held at 10:25 o'clock, at which there are brief and simple religious exercises. The noon hour extends from 12:35 to 2 o'clock. The afternoon session begins at 2 o'clock, and continues until 5:40. Work extends through six days of the week.

EXAMINATIONS

Students failing to receive a semester mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the Registrar his yearly average in all subjects and present himself for supplementary examinations, according to the program given on page 4.

Students failing to receive a semester mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

All students who voluntarily register for military drill shall be required to drill the entire year and be subject to the same rules and regulations as other cadets. Such students must receive credit or honorable dismissal from the department before graduating.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

No other supplementary examination will be given. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to present themselves for final examination at the end of the first or second semester will be given zero on the examinations.

Students whose absences in either semester exceed four weeks in the aggregate are not permitted to take examinations without special permission of the faculty.

A fee of five dollars per subject is required for each special examination.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

THE SCHOOL OF MINES

GRADUATION

Students completing courses of study to the satisfaction of the faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examinations in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least one full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examinations held at the end of the second semester. Irregular attendance will debar a student from entering all final examinations.

THESES

The thesis work is intended to bring in review and connect the work in mining and metallurgy, geology and mineralogy, mechanical and electrical engineering, mathematics and mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for mining engineers and the working out of a metallurgical problem in the case of candidates for the metallurgical degree.

As much latitude as possible will be allowed in the choice of type of deposit and location. Outlines will be furnished setting forth the lines of investigation which will enable the student to select a suitable project during the junior field work. Prior to final registration for first semester senior year each student is required to submit to the department concerned an outline of the chosen project, accompanied with a topographic map and a sufficient number of photographs to clearly represent the locality.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in first semester senior year.

All preliminary work must be done and final work on project must be under way by December 1st and submitted for final approval by April 9th. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30th. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the school.

Special Information

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of Engineer of Mines (E. M.), Engineer of Mines in Geology [E. M. (Geology)], and Metallurgical Engineer (Met. E.) respectively.

The degree of Met. E. may be conferred upon a candidate who received the degree of E. M. in four or five years, and vice versa, provided such candidate completes an additional year's work at the school and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and Mechanic Arts, and in the School of Technical and Applied Chemistry, who contemplate taking a degree in this school after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

SUMMARY OF EXPENSES

FIRST YEAR-Five-Year Courses

*Incidental fee\$	30.00
Chemical laboratory fee	10.00
Shop work	9.00
Books	20.00
Note books and supplies	5.00

FRESHMAN YEAR

*Incidental fee	\$30.00
Chemical laboratory fee	10.00
Mineralogical laboratory fee	6.00
Assaying laboratory fee	15.00
Books	25.00
Draughting instruments	15.00
Note books and supplies	5.00

THE SCHOOL OF MINES

SOPHOMORE YEAR

*Incidental fee	.\$30.00
Chemical laboratory fee	. 14.00
Physics laboratory fee	. 6.00
Books	. 15.00
Note books and supplies	. 5.00

JUNIOR YEAR

*Incidental fee\$30.00
Experimental laboratory
Trip to the mines\$150.00 to 200.00
Books
Note books and supplies 5.00

SENIOR YEAR

*Incidental fee	\$30.00
Chemical laboratory fee	10.00
Electrical laboratory fee	5.00
Ore testing laboratory fee	
Experimental laboratory fee	
Books	
Note books and supplies	5.00

*For non-residents the incidental fee is \$60 per year.

Good board can be obtained at a cost varying from \$3.00 to \$4.00 per week. Room rent varies from \$5.00 to \$15.00 per month. With two occupying one room, the rent per student would be considerably lower.

ORGANIZATION

The organization of the School of Mines dates back to 1889, when the general faculty of the University recommended to the Board of Regents its establishment. In 1891 the legislature of the State of Minnesota voted an appropriation for establishing and equipping the school. Two annual appropriations have since been made for its support. The legislature of 1901 appropriated \$47,500 for a new School of Mines Building. In 1903 the legislature appropriated \$25,000 for completing and equipping the School of Mines Building, and in 1905 an additional sum was provided for equipment.

SCHOOL OF MINES BUILDING

The School of Mines Building is designed to accommodate only the technical work of the School of Mines, as adequate building accommoda-

tions and equipment have already been furnished for chemistry, geology, mineralogy, drawing, and mechanical and electrical engineering. The building is 150 feet long by 65 feet wide. It is a brick building three stories high. The lower floor is occupied by the assaying and metallurgical laboratories; the second floor contains offices, two large lecture rooms, a department library, and a museum; the third floor provides two quiz rooms, a large, well-lighted draughting room, a thesis room, a dark room, and a blue print room. This building makes possible the development of the work already begun and offers facilities for more extended work along technical lines.

LOCATION

The University of Minnesota is located in the city of Minneapolis, on the east bank of the Mississippi River. The School of Mines has its buildings and laboratories on the same ground. Students of the School of Mines have, therefore, all the opportunities afforded by a large university.

Minneapolis is surrounded by, and is in direct communication with, several important mining and smelting districts. As the city is a railroad center, all possible transportation facilities are available.

FIELD WORK

Field work is conducted at the iron mines in the northern part of this state, in the copper and iron regions of Michigan, in the mines and smelters of Montana, Colorado, Utah, and California, and in the coal mines of Pennsylvania.

At least one of these districts will be visited by each class, affording splendid opportunities for study and observation.

The field work in mining and metallurgy consists of one trip at the close of the junior year. For details see pages 32 and 39.

Students must deposit with **Accountant**, at least **two weeks** before time set for the departure of class, a sum sufficient to cover following expense items:

1st. Board and lodging.

2d. Necessary mine supplies.

Transportation and incidental expenses are not included in the above items and must be met individually.

A statement of expenditures will be rendered at the close of the work and any balance existing will be refunded.

The amount of deposit required will vary according to the locality visited, and will be announced each year when arrangements for the trip are completed.

THE SCHOOL OF MINES

THE ELLIOTT SCHOLARSHIP LOAN FUND

To fulfill the wish of the late Dr. A. F. Elliott to aid young men who find their efforts to obtain a practical education embarrassed through lack of means, the sum of \$5,000 was placed in the hands of the Board of Regents as a scholarship fund. The income from this fund is loaned students in the School of Mines on the following conditions: the financial needs of the applicant, his scholarship, moral character, enthusiasm shown in his work, and promise of usefulness in his profession. When money is available, it may be loaned to pay the expenses of worthy students during sickness. The loans are to be repaid, without interest, at the earliest convenience of the recipients.

LIBRARY

The library consists of about two thousand five hundred volumes. This number represents only those works that treat directly of mining and metallurgical subjects.

The school has a complete set of the leading mining and metallurgical journals, and other similar books of reference. The leading periodicals are accessible to all. Constant references in lectures compel the student to keep himself well informed as to the latest methods, machinery, and changes in practice going on in his special line of work.

In addition to the above, many thousand volumes on chemistry, mineralogy, and geology complete a most valuable working and reference library. A card index is kept of all articles of value and interest appearing in the leading periodicals.

PHOTOGRAPHY

Photographs of surface and underground appliances, metallurgical plants, copies of drawings and other photographs are indispensable to the study of mining and metallurgy. With the report of his field work every student is expected to present photographs, as well as sketches, of various objects under consideration. There is also a very complete set of lantern slides illustrating the principal methods of underground workings and metallurgical plants, at home and abroad. Several hundred slides have been made in the department's laboratory which bear directly on the work done in Minnesota and the neighboring northwest. Many valuable photographs are constantly being made. Blue prints of these are given students as illustrations. Much time, usually spent in making sketches and diagrams, is thus saved.

23

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thorough courses in mechanics, mathematics, physics, chemistry, mineralogy and geology:

(A) Assaying—to determine if ore has value for treatment. (B)
 Mining engineering—to furnish material for treatment. (c) Ore testing
 —to determine best method of treatment. (D) Ore dressing—furnishing
 products for metallurgical treatment. (E) Metallurgy—smelting and
 refining ores and ore dressing products; reduction to metals.

Courses in Mining Engineering

Courses Leading to the Degree of E. M.

FIRST YEAR-FIVE-YEAR COURSES

FIRST SEMESTER

CHEMISTRY 1, six hours, Miss Cohen and Assistants MATHEMATICS 1, four hours, Assistant Professor Lambert MATHEMATICS 3, three hours, Professor Comstock MECHANICAL ENGINEERING 1 and 2, six hours, Assistant Professor Shipley RHETORIC 15, four hours, Mr. Nichols SPANISH 11, three hours, Mr. Melom

SECOND SEMESTER

CHEMISTRY 1, six hours, Miss Cohen and Assistants MATHEMATICS 2, three hours, Assistant Professor Lambert MATHEMATICS 4, three hours, Professor Comstock MECHANICAL ENGINEERING 3, six hours, Mr. Peterson RHETORIC 15, four hours, Mr. Nichols SPANISH 11, three hours, Mr. Melom

FRESHMAN YEAR-FOUR AND FIVE-YEAR COURSES

FIRST SEMESTER

CHEMISTRY 2, eight hours, Professor Frankforter and Mr. Frary DESCRIPTIVE GEOMETRY 13, three hours, Professor Kirchner DRAWING 11, four hours, Mr. French MATHEMATICS 5, five hours, Assistant Professor Lambert MINERALOGY 1, eight hours, Professor Hall and Assistant Professor Grout

SECOND SEMESTER

CHEMISTRY 3, eight hours, Professor Frankforter and Mr. Frary DRAWING 12, four hours, Mr. French DRAWING 14, four hours, Professor Kirchner and Mr. McMillan MATHEMATICS 6, five hours, Assistant Professor Lambert

 $\mathbf{25}$

METALLURGY 1, twelve hours, Professors Appleby, Christianson, and Pease

MINERALOGY 2, four hours, Professor Hall and Assistant Professor Grout

SOPHOMORE YEAR-FOUR AND FIVE-YEAR COURSES

FIRST SEMESTER

CHEMISTRY 4, eight hours, Professor Sidener

DESCRIPTIVE GEOMETRY 15, two hours, Professor Kirchner

DRAWING 17, four hours, Mr. Rowley and Mr. French

MATHEMATICS 7, five hours, Assistant Professor Lambert

METALLURGY 3, three hours, Professor Christianson

PHYSICS 1 and 2, five hours, Professor Zeleny, Mr. Holman, and Mr. McKeehan

SECOND SEMESTER

CHEMISTRY 5, eight hours, Professor Sidener

DRAWING 18, four hours, Mr. Rowley and Mr. French

GEOLOGY 3, three hours, Mr. Soper

MATHEMATICS 8, five hours, Assistant Professor Lambert

METALLURGY 4, three hours, Professor Christianson

MINING 1, four hours, Professor McCarty

PHYSICS 3 and 4, five hours, Professor Zeleny, Mr. Holman, and Mr. McKeehan

FIELD WORK 3 (a), first two weeks in June, Mr. Soper

JUNIOR YEAR-FOUR AND FIVE-YEAR COURSES

FIRST SEMESTER

EXPERIMENTAL ENGINEERING 1, four hours, Assistant Professor Shoop GEOLOGY 4, three hours, Professor Hall and Mr. Soper

GEOLOGY 9, four hours, Mr. Bowles

MECHANICS 9, five hours, Professor Comstock

MECHANICAL ENGINEERING 18, two hours, Professor Flather

METALLURGY 5, four hours, Professor Pease

MINING 2, five hours, Professor van Barneveld

MINING 3, five hours, Professor McCarty and Assistant Professor Kingston

SECOND SEMESTER

EXPERIMENTAL ENGINEERING 2, four hours, Assistant Professor Shoop

GEOLOGY 10, four hours, Mr. Bowles MECHANICS 10, three hours, Professor Comstock MECHANICS 12, five hours, Professor Comstock METALLURGY 6, four hours, Professor Pease MINING 2, five hours, Professor van Barneveld MINING 5, five hours, Professor McCarty MINING 7, six hours, Assistant Professor Kingston FIELD WORK. Months of May, June, July, and August Mine Surveying 8, beginning about May 1st. Professor van Barneveld Professor McCarty Assistant Professor Kingston Professor Appleby Metallurgy 8, one week Professor Christianson Professor Pease Professor van Barneveld Practical Mining 9, six weeks Professor McCarty Assistant Professor Kingston

SENIOR YEAR-FOUR AND FIVE-YEAR COURSES

FIRST SEMESTER

CHEMISTRY 14, eight hours, Professor Sidener ELECTRICAL ENGINEERING 4, five hours, Assistant Professor Ryan GEOLOGY 12, four hours, Mr. Soper MECHANICS 13, five hours, Professor Comstock METALLURGY 2, ten hours, Professors Appleby, Christianson, and Pease MINING 4, five hours, Professor van Barneveld MINING (Thesis) 10, two hours, Professor van Barneveld and Assistants

SECOND SEMESTER

CHEMISTRY 18, eight hours, Professor Sidener

EXPERIMENTAL ENGINEERING 5, four hours, Professor Kavanaugh Geology 13, four hours, Mr. Soper

MECHANICS 14, six hours, Professor Comstock

MINING 4, five hours, Professor van Barneveld

MINING (Designs and Specifications) 6, eight hours, Professors van Barneveld and Comstock

MINING (Thesis) 10 four hours, Professor van Barneveld and Assistants

Courses Leading to the Degree of E. M. (Geology)

FIRST YEAR

FIRST SEMESTER

CHEMISTRY 1, six hours, Miss Cohen and Assistants DESCRIPTIVE GEOMETRY 13, three hours, Professor Kirchner

DRAWING 11, four hours, Mr. French

FRENCH 1 or 3, three hours, Professor Benton and Assistants or

GERMAN 1 or 4, three hours, Professor Moore and Assistants MATHEMATICS 1, four hours, Assistant Professor Lambert RHETORIC 15, four hours, Mr. Nichols

SECOND SEMESTER

CHEMISTRY 1, six hours, Miss Cohen and Assistants

DRAWING 12, four hours, Mr. French

DRAWING 14, four hours, Professor Kirchner and Mr. McMillan

FRENCH 1 or 3, three hours, Professor Benton and Assistants or

GERMAN 1 or 4, three hours, Professor Moore and Assistants MATHEMATICS 2, three hours, Assistant Professor Lambert RHETORIC 15, four hours, Mr. Nichols

FRESHMAN YEAR

FIRST SEMESTER

CHEMISTRY 2, eight hours, Professor Frankforter and Mr. Frary FRENCH 2 or 5, three hours, Professor Benton and Assistants or

GERMAN 3 or 7, three hours, Professor Moore and Assistants

MATHEMATICS 5, five hours, Assistant Professor Lambert

MINERALOGY 1, eight hours, Professor Hall and Assistant Professor Grout

SECOND SEMESTER

CHEMISTRY 3, eight hours, Professor Frankforter and Mr. Frary FRENCH 2 or 5, three hours, Professor Benton and Assistants or

GERMAN 3 or 7, three hours, Professor Moore and Assistants MATHEMATICS 6, five hours, Assistant Professor Lambert

THE SCHOOL OF MINES

METALLURGY 1, twelve hours, Professors Appleby, Christianson, and Pease

MINERALOGY 2, four hours, Professor Hall and Assistant Professor Grout

SOPHOMORE YEAR

FIRST SEMESTER

CHEMISTRY 4, eight hours, Professor Sidener DESCRIPTIVE GEOMETRY 15, two hours, Professor Kirchner DRAWING 17, four hours, Mr. Rowley and Mr. French MATHEMATICS 7, five hours, Assistant Professor Lambert MINERALOGY (Advanced), three hours Physics 1 and 2, five hours, Professor Zeleny, Mr. Holman, and Mr. McKeehan SECOND SEMESTER

CHEMISTRY 5, eight hours, Professor Sidener

DRAWING 18, four hours, Mr. Rowley and Mr. French

GEOLOGY 3, three hours, Mr. Soper

MATHEMATICS 8, five hours, Assistant Professor Lambert

METALLURGY, three hours

MINING 1. four hours. Professor McCarty

PHYSICS 3 and 4, five hours, Professor Zeleny, Mr. Holman, and Mr. Mc Keehan

FIELD WORK IN GEOLOGY, four weeks

JUNIOR YEAR

FIRST SEMESTER

GEOLOGY 4, three hours, Professor Hall and Mr. Soper GEOLOGY 9, four hours, Mr. Bowles MECHANICS 9, five hours, Professor Comstock MINING 2, five hours, Professor van Barneveld MINING 3, five hours, Professor McCarty and Assistant Professor Kingston PALEONTOLOGY, three hours ELECTIVES, six hours

SECOND SEMESTER

GEOLOGY 10, four hours, Mr. Bowles MECHANICS 10, three hours, Professor Comstock MINING 2, five hours, Professor van Barneveld MINING 5, five hours, Professor McCarty MINING 7, six hours, Assistant Professor Kingston

THE UNIVERSITY OF MINNESOTA

PALEONTOLOGY (Invertebrate), nine hours SURVEYING (Geological), two hours ELECTIVES, four hours

FIELD WORK. Months of May, June, July, and August Mine Surveying 8, beginning about May 1st.

> Professor van Barneveld Professor McCarty Assistant Professor Kingston Professor van Barneveld Professor McCarty Assistant Professor Kingston

Practical Geology, four weeks

Practical Mining 9, six weeks

SENIOR YEAR

FIRST SEMESTER

GEOLOGY 12, four hours, Mr. Soper GEOLOGY OF LAKE SUPERIOR DISTRICT, five hours GENERAL AND MINING LAW, three hours MECHANICS 13, five hours, Professor Comstock MINING 4, five hours, Professor van Barneveld THESIS, ten hours

SECOND SEMESTER

GEOLOGY 13, four hours, Mr. Soper GEOLOGY OF WESTERN MINING DISTRICTS, five hours GEOLOGICAL MINE MODELS, ETC., ten hours MINING 4, five hours, Professor van Barneveld THESIS, ten hours

DEPARTMENT OF MINING ENGINEERING

Mining engineering extends through the sophomore, junior, and senior years. The subjects given, together with the sequence necessary, are treated in the accompanying outline of the course.

Until the first semester of the junior year, the course consists of lectures and recitations only. In the subsequent work, text-books are used in connection with the lectures.

In the senior year, problems in hoisting, hauling, pumping, ventilation, and similar subjects become an important part of the work.

DESIGNS AND SPECIFICATIONS

The student makes, in connection with his thesis work, working drawings of mine cars, skips, and other parts of mine equipment that are usually designed and made at the mine.

THE SCHOOL OF MINES

MINE SURVEYING

The work in surveying is given in the junior year and is designed solely for mining engineers.

The work begins with the elements of plane surveying with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. This is followed by a course in mine mapping during the second semester of junior year and six weeks of field work as follows: Beginning with the first Monday in May the class meets daily for the practice of plane surveying at some readily accessible locality (to be announced each year). The duration of this course is four weeks. Eight hours a day.

The students are divided into squads of two or four, and each is required to complete satisfactorily the following exercises and surveys:

- 1. Chaining
- 2. Compass reading
- 3. Adjustment of hand levels and practice in leveling
- 4. Adjustment and use of wye levels
- 5. Adjustment of mining transit
- 6. Reading angles
- 7. Traverse with steel tape
- 8. Azimuth traverse with stadia
- 9. Determination of meridian, latitude, and time by solar and stellar observations
- Survey of mining claim according to the regulations of the U. S. Government
- 11. Measurement of earthwork
- 12. Laying out railroad tangents, curves, and crossings

Each squad must provide itself with a 6-foot steel tape, graduated to hundredths.

After the completion of this work from ten days to two weeks are spent in the actual underground survey of a mine or part of a mine in some mining district in Minnesota or Michigan.

A full equipment of surveying instruments of the latest and best makes is furnished to each squad for this work.

Students who furnish satisfactory evidence of proficiency in this work may be given credit therefor. The department, however, reserves the right in any case to require such students to take a theoretical or a practical examination or both.

THE UNIVERSITY OF MINNESOTA

FIELD WORK IN MINING

SOPHOMORE YEAR

After the close of the field work in geology (first two weeks in June) members of the sophomore class are required to engage for six weeks in underground mining work on the Minnesota or Michigan iron ranges, for which they may receive wages.

JUNIOR YEAR

Upon termination of the junior field work in mine surveying and in metallurgy (not later than July 1st) the members of the junior class are required to spend at least six weeks in practical work in one or more of the metal mines of the west. Four weeks must be spent in actual underground mining for which the student may receive wages. At least two weeks must be devoted to a special course of observation and study of mining methods and mine plant, following special instructions to be given yearly. The department will render all possible assistance in locating students in the camps of their choice.

Each student must keep a diary and must record therein, in minute detail, all observations and sketches. He must in person submit this diary to the department not later than October 2d.

Field work will reopen at the University September 12th. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in mine mapping, mining, and metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned.

The program covering this work is as follows: Mine Mapping, September 12th-16th, inclusive; Mining, September 18th-26th; Metallurgy, September 27th-October 2d.

On October 2d all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn to scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before October 2d. These reports shall become the property of the school.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reason, fail to complete this work in regular course, he may, with the consent of the department,

THE SCHOOL OF MINES

be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

ORE DRESSING

The lectures and recitations in ore dressing extend through the second semester of the junior year, and comprise the detailed study of ore dressing and concentrating machinery, together with the study of typical combinations of dressing machines as found in the several mining districts of the United States.

In connection with the theoretical work, the ore dressing and testing plant of the school is utilized for practical illustrations.

Courses in Metallurgy

Courses Leading to the Degree of Met. E.

FIRST YEAR—FIVE-YEAR COURSES

FIRST SEMESTER

CHEMISTRY 1, six hours, Miss Cohen and Assistants MATHEMATICS 1, four hours, Assistant Professor Lambert MATHEMATICS 3, three hours, Professor Comstock MECHANICAL ENGINEERING 1 and 2, six hours, Assistant Professor Shipley RHETORIC 15, four hours, Mr. Nichols SPANISH 11, three hours, Mr. Melom

SECOND SEMESTER

CHEMISTRY 1, six hours, Miss Cohen and Assistants MATHEMATICS 2, three hours, Assistant Professor Lambert MATHEMATICS 4, three hours, Professor Comstock MECHANICAL ENGINEERING 3, six hours, Mr. Peterson RHETORIC 15, four hours, Mr. Nichols SPANISH 11, three hours, Mr. Melom

FRESHMAN YEAR—FOUR AND FIVE-YEAR COURSES

FIRST SEMESTER

CHEMISTRY 2, eight hours, Professor Frankforter and Mr. Frary DESCRIPTIVE GEOMETRY 13, three hours, Professor Kirchner DRAWING 11, four hours, Mr. French MATHEMATICS 5, five hours, Assistant Professor Lambert MINERALOGY 1, eight hours, Professor Hall and Assistant Professor Grout

SECOND SEMESTER

CHEMISTRY 3, eight hours, Professor Frankforter and Mr. Frary DRAWING 12, four hours, Mr French DRAWING 14, four hours, Professor Kirchner and Mr. McMillan MATHEMATICS 6, five hours, Assistant Professor Lambert METALLURGY 1, twelve hours, Professors Appleby, Christianson, and Pease

MINERALOGY 2, four hours, Professor Hall and Assistant Professor Grout

SOPHOMORE YEAR-FOUR AND FIVE-YEAR COURSES

FIRST SEMESTER

CHEMISTRY 4, eight hours, Professor Sidener DESCRIPTIVE GEOMETRY 15, two hours, Professor Kirchner DRAWING 17, four hours, Mr. Rowley and Mr. French MATHEMATICS 7, five hours, Assistant Professor Lambert METALLURGY 3, three hours, Professor Christianson PHYSICS 1 and 2, five hours, Professor Zeleny, Mr. Holman, and Mr.

McKeehan

SECOND SEMESTER

CHEMISTRY 5, eight hours, Professor Sidener DRAWING 18, four hours, Mr. Rowley and Mr. French

GEOLOGY 3, three hours, Mr. Soper

MATHEMATICS 8, five hours, Assistant Professor Lambert

METALLURGY 4, three hours, Professor Christianson

MINING 1, four hours, Professor McCarty

PHYSICS 3 and 4, five hours, Professor Zeleny, Mr. Holman, and Mr. McKeehan

FIELD WORK 3 (a), first two weeks in June, Mr. Soper

JUNIOR YEAR—FOUR AND FIVE-YEAR COURSES

FIRST SEMESTER

EXPERIMENTAL ENGINEERING 1, four hours, Assistant Professor Shoop GEOLOGY 4, three hours, Professor Hall and Mr. Soper GEOLOGY 9, four hours, Mr. Bowles MECHANICS 9, five hours, Professor Comstock MECHANICAL ENGINEERING 18, two hours, Professor Flather METALLURGY 5, four hours, Professor Pease MINING 2, five hours, Professor van Barneveld MINING 3, five hours, Professor McCarty and Assistant Professor Kingston

SECOND SEMESTER

EXPERIMENTAL ENGINEERING 2, four hours, Assistant Professor Shoop GEOLOGY 10, four hours, Mr. Bowles MECHANICS 10, three hours, Professor Comstock

THE UNIVERSITY OF MINNESOTA

MECHANICS 12, five hours, Professor Comstock METALLURGY 6, four hours, Professor Pease MINING 2, five hours, Professor van Barneveld MINING 5, five hours, Professor McCarty MINING 7, six hours, Assistant Professor Kingston FIELD WORK. Months of May, June, July, and August. Mine Surveying 8, beginning about May 1st. Professor v Profe

Metallurgy 8, one week

Professor van Barneveld Professor McCarty Assistant Professor Kingston Professor Appleby Professor Christianson Professor Pease Professor van Barneveld Professor McCarty Assistant Professor Kingston

Practical Mining 9, six weeks

SENIOR YEAR-FOUR AND FIVE-YEAR COURSES

FIRST SEMESTER

CHEMISTRY 14, eight hours, Professor Sidener ELECTRICAL ENGINEERING 4, five hours, Assistant Professor Ryan GEOLOGY 12, four hours, Mr. Soper MECHANICS 13, five hours, Professor Comstock MINING 4, five hours, Professor van Barneveld METALLURGY 2, ten hours, Professor Appleby, Christianson, and Pease

SECOND SEMESTER

CHEMISTRY 18, eight hours, Professor Sidener CHEMISTRY 16, six hours, Mr. Frary EXPERIMENTAL ENGINEERING 5, four hours, Professor Kavanaugh MECHANICS 14, six hours, Professor Comstock METALLURGY 7, three hours, Professor Christianson METALLURGY 9, four hours, Professors Appleby and Comstock MINING 4, five hours, Professor van Barneveld

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use.

36

The practical work consists in visits to smelting and refining works which are accessible. The work in metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags are shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students, who are required to make up the necessary charges and submit their reports in detail. This work is offered to students completing the necessary courses in mineralogy and chemistry.

The Assay Laboratories are located in the School of Mines Building and consist of:

1st. Preparation room. This room is 62 feet long by 36 feet wide and accommodates 66 students. Here samples and reagents are weighed preparatory to assaying. Each student is furnished with a complete set of apparatus, including a pulp balance for individual use. All operations are therefore conducted with the greatest economy of time and entirely apart from the furnace room. The separation of the preparation room from the furnace room is of greatest importance. Nearly all ores are crushed and pulverized by suitable machines run by electric motors. Students are compelled to pulverize by hand a minimum number of samples, thereby saving much time for extended and advanced work in special lines.

2d. Furnace room. This room is 60 feet long by 42 feet wide. The high ceiling and special ventilation provided for this room make it a most comfortable assay furnace room. It provides for the accommodation of twelve double-decked muffle furnaces, twenty-four crucible furnaces, and twelve gasoline furnaces. After the sample has been placed in a suitable vessel for fusion, it is taken to the furnace room, which communicates directly with the preparation room. 3d. Balance room. This room is 31 feet long by 16 feet wide. In this room are various types of balances for accurately weighing gold and silver beads and bullion. The room is specially lighted by electric cove lights from the ceiling. The balances are placed on heavy brick piers which are independent of the walls of the building.

ORE TESTING

The lectures treat of the use and purposes of all the machinery connected with the subject, supplemented by detailed drawings.

There are complete testing works connected with the department where the student may see the working of, and handle for himself, crushers, rolls, Huntington mill, concentrating machinery, such as vanners, buddles, jigs, pan for amalgamation, settlers, reverberatory furnaces for oxidizing and oxidizing-chloridizing roasts, leaching and chlorination plants, as well as sizing apparatus and hydraulic separators. Sufficiently large amounts of ore are given to make the necessary tests upon the different machines and the students report the best method of treatment. The first semester of the senior year is devoted to instruction and laboratory work, and is required of students both in mining and metallurgy.

The ore testing works meet educational as well as commercial needs.

EDUCATIONAL. The ore testing plant acquaints the student with the construction and manipulation of the principal typical machines used in the leading ore dressing establishments of the country. It is here that students in mining and metallurgical engineering get the requisite practical experience. They handle all machines and operate on sufficiently large amounts of material to determine the methods best suited to a given ore to extract the largest amount of metal with the least possible loss.

COMMERCIAL. Ore testing works are an important factor in mining and metallurgical projects. The commercial object is to determine the best method of treating a given ore so as to yield the largest percentage of the metal it contains at the least possible cost. Samples varying from 500 pounds to car load lots can be treated by various methods.

The ore testing works are located on the east bank of the Mississippi between the Great Northern and Northern Pacific railroads. Located at this point on the University campus, it offers the very best facilities for both educational and commercial purposes.

As the funds appropriated for the erection of such a plant were sufficient to purchase only the necessary machinery, the business men of Minneapolis generously provided a suitable building. This building, 94 by 66 feet, is built of brick and stone.

MACHINERY. The plant contains all the machinery necessary to illustrate the various processes of ore testing, viz.: A Bridgman mechanical sampler, size B; a link belt bucket elevator; a pulley feeder complete; a pair of 124 by 12 geared rolls complete; a four compartment spitzkasten: a three compartment Hartz jig: a Collum jig complete with cone for driving; a three and a half foot Huntington mill complete; a three stamp mill, 275-pound stamps; a five stamp mill, 850-pound stamps; a Challenge automatic feeder for five-stamp battery; a suspended Challenge feeder for three-stamp battery; a Tulloch feeder for Huntington mill; a single deck buddle, twelve feet in diameter; a four-foot plain belt Frue vanner; a Cammett concentrator; a Hooper pneumatic concentrator; a Century drop motion jig; a three-foot amalgamating pan; a five-foot settler; a Bruckner roasting furnace, with fire box on wheels; a chlorination barrel; a battery tightener; a two-horse power vertical boiler; a steam drying pan; three trommels, with driving arrangement and gears; a one thousand pound Reedy elevator, complete with worm gear; two overhead crawls, each with eighty-foot track; one-ton pulley block; a quarter-ton pulley block: a scoop car, with flat wheels: two twenty-horse power electric motors; three MacDermott automatic samplers, etc.

FIELD WORK IN METALLURGY

At the end of junior year opportunity is given the student to study metallurgical operations at one or more smelting works. This work will begin about June 22d. Not over one week's time will be devoted to this work.

The student must keep a diary and record therein, in minute detail, all work done, his observations and sketches. He must, in person, submit this diary to the department not later than September 12th.

Field work will reopen at the University September 12th. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in mine mapping, mining, and metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned.

The program covering this work is as follows: Mine Mapping, September 12th-16th, inclusive; Mining, September 18th-26th; Metallurgy, September 27th-Occober 2d.

On October 2d all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn

THE UNIVERSITY OF MINNESOTA

to scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before October 2d. These reports shall become the property of the school.

Departmental Statements

CHEMISTRY

GEORGE B. FRANKFORTER, Ph. D., Professor of Chemistry CHARLES F. SIDENER, B. S., Professor of Chemistry FRANCIS C. FRARY, M. S., Instructor in Chemistry LILLIAN COHEN, M. S., Instructor in Chemistry

1. GENERAL CHEMISTRY

*Six credits (six hours per week)

MISS COHEN Both semesters

Required of first-year students, five-year courses.

Recitation and laboratory work. The course includes a study of the common elements and their compounds, with an introduction to the modern theories of chemistry.

2. GENERAL AND QUALITATIVE ANALYSIS PROFESSOR FRANKFORTER AND MR.

FRARY

Five credits (two lectures, six laboratory hours per week) First semester Required of freshmen.

The course includes special general chemistry and the reactions of the metals as applied to their separation and identification.

3. QUALITATIVE ANALYSIS PROFESSOR FRANKFORTER AND MR. FRARY Five credits (two lectures, six laboratory hours per week) Second semester Open to students completing 2. Required of freshmen.

The work in this course will include examination of alloys, minerals, slags, and other compounds.

4. QUANTITATIVE ANALYSIS PROFESSOR SIDENER AND ASSISTANTS Five credits (two lectures, six laboratory hours per week) First semester Open to students completing 3. Required of sophomores.

The course includes an introduction to quantitative and a beginning of gravimetric analysis.

5. VOLUMETRIC ANALYSIS Five credits (two lectures, six laboratory hours per week) Open to students completing 4. Required of sophomores.

The course includes an introduction to volumetric determinations with a discussion of standard solutions and the necessary stoechiometric calculations.

14. SPECIAL PROBLEMS PROFESSOR SIDENER AND ASSISTANTS Five credits (two lectures, six laboratory hours per week) First semester Open to students completing 5. Required of seniors.

The course includes the working out of various mineralogical, technological, and metallurgical problems, with work on ores of base metals, limestones, slags, etc.

*Note. A credit is one recitation or lecture hour per week, per semester. Two laboratory hours are equal to one credit. 16. ELECTRO-CHEMICAL ANALYSIS MR. FRARY Four credits (two lectures, four laboratory hours per week) Second semester Open to students completing 14. Required of seniors in Metallurgy. The course includes the qualitative and quantitative separation of metals by

electrolysis.

 18. IRON AND STEEL ANALYSIS
 PROFESSOR SIDENER AND ASSISTANTS

 Five credits (two lectures, six laboratory hours per week)
 Second semester

 Open to students completing 14. Required of seniors.
 Second semester

The course includes the rapid determination of iron by the various methods, as well as the determination of associated elements, sulphur, phosphorus, silicon, manganese, carbon, and others.

DRAWING AND DESCRIPTIVE GEOMETRY

WILLIAM H. KIRCHNER, B. S., Professor of Drawing and Descriptive Geometry

- FRANK B. ROWLEV, B. S., M. E., Instructor in Drawing FRANKLIN R. MCMILLAN, C. E., Instructor in Drawing ROBERT W. FRENCH, B. S., Instructor in Drawing
- 11. FREEHAND DRAWING MR. FRENCH Two credits (four drafting hours per week) First semester Required of freshmen. Sketching, lettering, and the elements of engineering drawing, representa-

tion of details of machines and structures, and the interpretation of working drawings.

12. MECHANICAL DRAWING MR. FRENCH Two credits (four drafting hours per week) Second semester Open to students completing 11 and 13. Required of freshmen. Continuation of course 11 as outlined above.

The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes.

13. DESCRIPTIVE GEOMETRY PROFESSOR KIRCHNER Two credits (one lecture, two drafting hours per week) First semester Required of freshmen.

Representation; parallel and radial projection; perspective, pure and applied. Lettering, elementary problems, and exercises.

- 14. TOPOGRAPHICAL DRAWING PROFESSOR KIRCHNER AND MR. MCMILLAN Two credits (four drafting hours per week) Second semester Open to students taking 12. Maps and sketches. Brush and pen conventions.
- 15. DESCRIPTIVE GEOMETRY PROFESSOR KIRCHNER Two credits (two lecture hours per week) First semester Open to students completing mathematics 6. Required of sophomores. Continuation of course 13 as outlined above. Projection control and explications propriorities and explications.

Projection—central and special cases, principles and applications, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems.

42

THE SCHOOL OF MINES

- 17. DRAFTING MR. ROWLEY AND MR. FRENCH Two credits (four drafting hours per week) First semester Open to students taking 15. Required of sophomores Graphice, machine drafting, and structural drafting. Instruction in drafting room methods.
- 18. DRAFTING MR. ROWLEY AND MR. FRENCH Two credits (four drafting hours per week) Second semester Open to students completing 17. Required of sophomores. Continuation of course 17 as outlined above.

ELECTRICAL ENGINEERING

GEORGE D. SHEPARDSON, M. A., M. E., Professor of Electrical Engineering WILLIAM T. RYAN, E. E., Assistant Professor of Electrical Engineering

4. ELECTRIC POWER ASSISTANT PROFESSOR RYAN Three credits (one lecture, four laboratory hours per week) First semester Open to students completing physics 1. Required of seniors in E. M. and Met. E. courses.

Elements of theory and practice of electrical measurements, wiring, dynamos, motors, and electric lighting.

EXPERIMENTAL ENGINEERING

WILLIAM H. KAVANAUGH, M. E., Professor of Experimental Engineering CHARLES F. SHOOP, B. S., Assistant Professor of Experimental Engineering

1. STRENGTH OF MATERIALS ASSISTANT PROFESSOR SHOOP Two credits (four laboratory hours per week) First semester Open to students taking mechanics 9. Required of juniors in E. M. and Met. E. courses.

Laboratory work, investigating the strength and physical qualities of iron, steel, brass, copper, belting, chains, beams, brick, and stone.

2. STEAM LABORATORY Two credits (four laboratory hours per week) Open to students completing mechanical engineering 18. Required of juniors

in E. M. and Met. E. courses.

Exercises in valve setting, indicator practice, calibration of steam gauges, efficiency of screws and hoists.

5. EXPERIMENTAL LABORATORY PROFESSOR KAVANAUGH Two credits (four laboratory hours per week) Second semester Open to students completing 2. Required of seniors in E. M. and Met. E. courses.

Hydraulic measurements. Calibration of weirs, nozzles, meters, and other hydraulic apparatus, calorimetry; tests of pumps, engines, and boilers.

THE UNIVERSITY OF MINNESOTA

FRENCH AND SPANISH

CHARLES W. BENTON, M. A., Litt. D., Professor, Head of Department of Romance Languages

CHARLES M. ANDRIST, M. L., Professor

JULIUS T. FRELIN, B. A., Assistant Professor

CARL M. MELOM, M. A., Instructor

HOMER A. DESMARAIS, B. A., Scholar

FRENCH

1. Beginning PROFESSOR ANDRIST, ASSISTANT PROFESSOR FRELIN' AND MR. DESMARAIS Six credits (three hours per week) Both semesters Open to first-year students in E. M. (Geology) course,

Fraser and Squair's French Grammar and Reader; modern texts.

2. INTERMEDIATE

PROFESSOR ANDRIST Six credits (three hours per week) Both semesters Open to students completing course 1.

Modern texts will be read, including some of the works of Coppee, Merimee, Daudet, Scribe, etc.

3. ADVANCED GRAMMAR AND COMPOSITION PROFESSOR ANDRIST Six credits (three hours per week) Both semesters Open to students in E. M. (Geology) course who enter with two years of

French.

Readings from modern authors, including selections from Coppee, Feuillet, and Sandeau.

5. THE CLASSICAL PERIOD OF FRENCH LITERATURE PROFESSOR BENTON Six credits (three hours per week) Both semesters Open to students completing courses 2 or 3.

The reading of works and selections produced during the classical period of French literature, and conversations in French concerning the same. The works of Corneille, Racine, Moliere, La Fontaine, etc. Compositions.

SPANISH

MR. MELOM 11. BEGINNING Six credits (three hours per week) Both semesters Required of first-year students in E. M. and Met. E. courses. Monsanto and Languellier, Spanish Course-Josselyn; Worman, First Spanish Book; Bransby, Spanish Reader.

GERMAN

JOHN G. MOORE, B. A., Professor, Head of Department of German HANS JUERGENSEN, M. A., Assistant Professor OSCAR BURKHARD, M. A., Assistant Professor RICHARD WISCHKAEMPER, M. A., Instructor

ASSISTANT PROFESSORS JUERGENSEN AND BURKHARD, MR. 1. BEGINNING WISCHKAEMPER Both semesters

Six credits (three hours per week)

Open to first-year students in E. M. (Geology) course.

Pronunciation, grammar, conversation and composition; selected reading in easy prose and verse.

3b. SCIENTIFIC INTERMEDIATE ASSISTANT PROFESSORS JUERGENSEN AND BURK-HARD, MR. WISCHKAEMPER Six credits (three hours per week) Both semesters

Open to students completing course 1.

Six credits (three hours per week)

This course is arranged to meet the peculiar needs of students of the School of Mines.

Text: Merckel's Bilder aus der Ingenieurtechnik.

4. PROSE AND POETRY PROFESSOR MOORE, ASSISTANT PROFESSORS JUERGEN-SEN AND BURKHARD, MR. WISCHKAEMPER Six credits (three hours per week) Both semesters Open to first-year students in E. M. (Geology) course who enter with two

years of German.

Meissner's Aus deutschen Landen; Goethe's Gedichte; Heine's Buch der Lieder. Geography, history, and legend. Review of German grammar throughout the year. This course may be supplemented.

7. ADVANCED SCIENTIFIC READING ASSISTANT PROFESSORS JUERGENSEN AND BURKHARD

Both semesters

Open to students who have taken course 3 or 4. Reading of scientific monographs and periodicals.

MECHANICS AND MATHEMATICS

ELTING H. COMSTOCK, M. S., Professor of Mechanics and Mathematics EDWIN M. LAMBERT, M. E., Assistant Professor of Mechanics and Mathematics

1. ALGEBRA ASSISTANT PROFESSOR LAMBERT Four credits (four recitations per week) First semester

Required of first-year students, five-year courses.

Review of elementary algebra, equations with one, two or more unknown quantities, inequalities, involution and evolution, theory of exponents, surds, quadratic equations, both numerical and literal, equations with one or more unknown quantities that can be solved by means of quadratic equations, progressions.

2. Solid Geometry and Mensuration ASSISTANT PROFESSOR LAMBERT Three credits (three recitations per week) Second semester

Required of first-year students, five-year courses.

Demonstrations of most important theorems, volumes, approximate volumes, prismoidal formula, etc.

3. COMPUTATION AND MENSURATION PROFESSOR COMSTOCK Three credits (three recitations per week) First semester Required of first-year students, five-year E. M. and Met. E. courses.

Approximate computation, graphs and graphical computation, logarithms and logarithmic computation, areas and approximations of areas.

4. ELEMENTARY MINE ACCOUNTING PROFESSOR COMSTOCK Three credits (three lectures and recitations per week) Second semester Required of first-year students, five-year E. M. and Met. E. courses.

Elementary accounting in general, applications to mine accounts; primary records, labor, supply, mine and mill products, and fund sheets; secondary records, invoice, labor and supply, mine and mill cost sheets, trial balance, etc.

5. ALGEBRA AND TRIGONOMETRY Five credits (five recitations per week) Required of freshmen.

ASSISTANT PROFESSOR LAMBERT First semester

Functions and functional notation, factors and roots of general quadratics. factor and remainder theorems, factors and values of functions, determinants, development of functions and undetermined coefficients, derived functions, theory of equations, permutations and combinations; trigonometric ratios, right triangles, general definitions of trigonometric functions, analytic relations, addition formulas, etc.

TRIGONOMETRY AND ANALYTIC GEOMETRY ASSISTANT PROFESSOR LAMBERT 6. Five credits (five recitations per week) Second semester

Open to students completing 5. Required of freshmen.

Trigonometric equations, oblique triangles, spherical formulas and solution of spherical triangles; systems of co-ordinates, loci, straight line, transformations, equations of conics, properties of conics.

7. ANALYTIC GEOMETRY AND CALCULUS ASSISTANT PROFESSOR LAMBERT Five credits (five recitations per week) First semester Open to students completing 6. Required of sophomores.

General equation of second degree, higher plane curves, co-ordinates in space, point, plane, straight line, quadric surfaces; nature of differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, elementary integration, expansion of functions, indeterminate forms, partial derivatives, change of variable.

8. CALCULUS

ASSISTANT PROFESSOR LAMBERT Five credits (five recitations per week) Second semester Open to students completing 7. Required of sophomores.

Applications continued, rational fractions, rationalization, formulas of reduction, multiple integration, various systems of co-ordinates, approximate integration, hyperbolic functions, some differential equations of mechanics; adjustments of observations.

9. MECHANICS

PROFESSOR COMSTOCK Five credits (five recitations and lectures per week) First semester Open to students completing 8, and physics 3. Required of juniors.

Statics and dynamics, rectilinear, circular, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy; elementary mechanics of materials.

STRENGTH AND RESISTANCE OF MATERIALS 10. PROFESSOR COMSTOCK Three credits (three recitations and lectures per week) Second semester Open to students completing 9. Required of juniors.

Mechanical and elastic properties of materials of construction; beams, shafts, columns, reinforced concrete, hollow cylinders and spheres, rollers, plates; theory of internal stress.

46

 PROFESSOR
 PROFESSOR
 COMSTOCK

 Three credits (one lecture, four drafting hours per week)
 Second semester

 Open to students completing 9.
 Required of juniors in E. M. and Met. E.

Graphic statics, analytic and graphic resolution of stresses in framed structures, loads, stresses in mining structures, design of mining structures.

13. HYDRAULICS AND WATER POWER PROFESSOR COMSTOCK Five credits (five recitations and lectures per week) First semester Open to students completing 12. Required of seniors.

Laws of the equilibrium, pressure and flow of liquids, estimation of power to be developed at a power site, dams and appendages, theory of water wheels and turbines, number and type of units to install, speed control, power house equipment, transmission.

 14. Power AND MINE PLANT DESIGN
 PROFESSOR COMSTOCK

 Three credits (six drafting hours per week)
 Second semester

 Open to students completing 13. Required of seniors in E. M. and Met. E.
 courses.

A study of power possibilities, costs, etc., and design of a power plant, surface equipment, and structures in connection with thesis work.

MECHANICAL ENGINEERING

JOHN J. FLATHER, Ph. B., M. E., Professor of Mechanical Engineering S. CARL SHIPLEY, B. S., M. E., Assistant Professor of Machine Construction

WILLIAM H. RICHARDS, Instructor in Carpentry and Pattern Work EDWARD QUIGLEY, Instructor in Forge Work

PETER PETERSON, Instructor in Foundry Practice

- 1. CARPENTRY
 MR. RICHARDS

 Four credits (six hours per week, six weeks)
 First semester

 Required of first-year students, five-year E. M. and Met. E. courses.
 Wood working, use of tools; lathe and bench work.

 Patterns for moulding, core boxes, flasks.
 Lectures and practice.
- BLACKSMITHING ASSISTANT PROFESSOR SHIPLEY AND MR. QUIGLEY Two credits (six hours per week, twelve weeks) First semester Required of first-year students, five-year E. M. and Met. E. courses. Use of tools, forging, welding, tool dressing, tempering. Lectures and practice.
- 3. FOUNDRY PRACTICE MR. PETERSON Three credits (six hours per week) Second semester Required of first-year students, five-year E. M. and Met. E. courses. Moulding, casting, mixing metals, brass work, and core making. Shop practice, recitations, and lectures.

 STEAM ENGINE
 PROFESSOR FLATHER

 Two credits (two lectures per week)
 First semester

 Open to students taking mechanics 9.
 Required of juniors in E. M. and

 Met. E. courses.
 State of the semester

Mechanics of the steam engine. Work in cylinder; effect of reciprocating parts; steam distribution. Mechanism of steam engines. A study of the details of modern steam engines. Valve and valve gears. A study of the slide valve, link motions and other reversing gear; automatic cut-off gears and the Zeuner diagrams. The steam engine indicator. Principles and operation of the instruments, indicator riggings, indicator cards, compounding.

METALLURGY

WILLIAM R. APPLEBY, M. A., Professor of Metallurgy PETER CHRISTIANSON, B. S., E. M., Professor of Metallurgy LEVI B. PEASE, M. S., Professor of Metallurgy

1. Assaying Professor Appleby and Assistants ' Eight credits (four lectures and eight laboratory hours per week)

Second semester

Open to students completing mineralogy 1. Required of freshmen in E. M. and Met. E. courses.

Determination of values of ores, metallurgical products and bullion.

2. ORE TESTING PROFESSOR APPLEBY AND ASSISTANTS Six credits (two lectures and eight laboratory hours per week) First semester Open to students completing 1 and mining 5. Required of seniors in E. M. and Met. E. courses.

Determination of methods of ore treatment, stamping, concentration, cyanidation, roasting, chlorination, lixiviation, and amalgamation.

3. GENERAL METALLURGY AND METALLURGY OF IRON PROFESSOR CHRISTIANSON Three credits (three lectures per week) First semester Open to students completing 1. Required of sophomores in E. M. and Met. E. courses.

Including the subjects of combustion, fuels, refractory materials, and furnaces. Lectures and recitations on metallurgy of iron.

4. METALLURGY OF WROUGHT IRON AND STEEL PROFESSOR CHRISTIANSON Three credits (three lectures per week) Second semester Open to students completing 3. Required of sophomores in E. M. and Met. E. courses.

Consideration of the principles of manufacture, details of plant construction, and chemical and physical phenomena. Metallography.

5. METALLURGY OF THE BASE METALS Four credits (four lectures per week) Open to students completing 4. Required of juniors in E. M. and Met. E. courses.

Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining methods.

6. METALLURGY OF THE PRECIOUS METALS Four credits (four lectures per week) Open to students completing 5. Required of juniors in E. M. and Met. E. courses.

Gold, silver, and platinum. Methods and principles of cyanidation, chlorination, amalgamation, and lixiviation as applied to the treatment of the above. 7. ELECTRO-METALLURGY

PROFESSOR CHRISTIANSON Three credits (three lectures per week) Second semester

Open to students completing 6. Required of seniors in Met. E. course. This course considers the treatment of ores by electricity, as well as electro-

lytic separation and refining of metals.

8. FIELD WORK IN METALLURGY PROFESSOR APPLEBY AND ASSISTANTS Two credits (eight hours per day in field for seven days.)

June following second semester

Open to students completing 6. Required of juniors. Study of metallurgical operations at smelters and mills. Detailed report is required covering plants visited.

9. THESIS AND SPECIFICATIONS PROFESSORS APPLEBY AND COMSTOCK Four credits (four hours, conference and laboratory) Second semester Open to students completing 8. Required of seniors in Met. E. course.

Detailed investigations of ore treatment, with report including designs and specifications for suitable plants.

MINING ENGINEERING

CHARLES E. VAN BARNEVELD, B. A., Sc., E. M., Professor of Mining Engineering

EDWARD P. MCCARTY, E. M., Professor of Mining

MERTON S. KINGSTON, E. M., Assistant Professor of Mining

1. MINING

PROFESSOR MCCARTY Second semester

Four credits (four lectures per week) Open to sophomores in regular standing. Required of sophomores. Explosives, blasting, air compressors, and quarrying.

MINING 2

PROFESSOR VAN BARNEVELD Ten credits (five lectures per week) Both semesters Open to those who have completed 1. Required of juniors.

Mode of occurrence of ore bodies; prospecting, shaft-sinking, tunneling, drifting, stoping, timbering. Methods of metal mining. Methods of coal mining. Hydraulic mining.

3. MINE SURVEYING PROFESSOR MCCARTY AND ASSISTANT PROFESSOR KINGSTON Five credits (five lectures per week) First semester Open to those who have completed mathematics 8 and mining 1. Required of juniors.

Computation, platting, and problems with special reference to mine surveying.

4. MINING AND MINING ENGINEERING PROFESSOR VAN BARNEVELD Ten credits (five lectures per week) Both semesters Open to those who have completed mining 2 and 3. Required of seniors. Mine management. The examination of a mining property. Sampling ore

reserves, etc. Mine accounts. Mine accidents. Mining law. Mining machinery, underground transportation, hoisting, pumping, and ventilation. Electricity applied to mining.

THE UNIVERSITY OF MINNESOTA

- 5. ORE DRESSING PROFESSOR McCARTY Five credits (five lectures per week) Second semester Open to those having completed sophomore work. Required of juniors. Mechanical preparation of ore for the markets, for metallurgical treatment, etc.
- DESIGNS AND SPECIFICATIONS PROFESSORS VAN BARNEVELD AND COMSTOCK Four credits (eight drafting hours per week) Second semester Open only to seniors in regular standing. Required of seniors in E. M. course. Designs of mine cars, skips, head-frames, etc., in connection with thesis work.
- 7. MINE MAPPING ASSISTANT PROFESSOR KINGSTON Three credits (six drafting hours per week) Second semester Open to those who have completed 3. Required of juniors.
- 8. FIELD WORK PROFESSOR VAN BARNEVELD AND ASSISTANTS Eight credits (eight hours a day for six weeks) Second semester Open to those who have completed mining 3. Required of juniors.

Practice in plane surveying during month of May. Practice in underground mine surveying during first two weeks of June.

9. PRACTICAL MINING PROFESSOR VAN BARNEVELD AND ASSISTANTS Eight credits (eight hours per day for six weeks) Summer vacation Open to those who have completed 7 and 8. Required of juniors.

Study of mining operations. Mine plant and equipment and practical mining work at a mine to be selected by department during months of July and August.

10. THESIS PROFESSOR VAN BARNEVELD AND ASSISTANTS Two and four credits (two and four-hour conferences)

Both semesters Open only to seniors in regular standing. Required of seniors in E. M. course. Conference with individual students. This work is based upon a review of the preceding technical work and field work.

MINERALOGY AND GEOLOGY

CHRISTOPHER W. HALL, M. A., Professor of Mineralogy and Geology FRANK F. GROUT, M. S., Assistant Professor of Mineralogy and Geology OLIVER BOWLES, M. A., Instructor in Mineralogy and Geology EDGAR K. SOPER, A. B., Instructor in Economic Geology

1. GENERAL MINERALOGY ASSISTANT PROFESSOR GROUT Six credits (four lectures, four laboratory hours per week) First semester Required of freshmen.

The physical and chemical characters of minerals, a study of the native elements and the ores of the common metals; the occurrence and association of economic minerals.

Descriptive mineralogy and classification; rock-forming minerals; genetic relationship and distribution.

Laboratory work consists of tests illustrating the range of minerals and the application of chemical and blowpipe analyses to the determination of species; introduction to the methods of quantitative blowpipe analysis; special topics; reference reading and discussions.

50

ASSISTANT PROFESSOR GROUT 2. PHYSICAL MINERALOGY Three credits (two lectures, two laboratory hours per week) Second semester Open to students completing 1. Required of freshmen.

An introduction to crystallography; physical characters of greatest service in rapid determination. Hand specimen practice preparatory to rock study.

3. ELEMENTS OF GEOLOGY

Three credits (three lectures per week) Required of sophomores.

A course designed to acquaint the student with the fundamental principles of geology preparatory to the study of mining.

1. Geodynamics, discussing the atmosphere, water, vulcanism, plants and animals as geologic agents. 2. Structural geology, explaining stratification, displacements, dislocations, fractures, and mineral veins. 3. Sight identification of common rocks. 4. An elementary discussion of the formation of ore deposits. Local excursions are required. Scott's Introduction; Spurr's Mining Geology.

3(a), FIELD WORK

One credit (first two weeks in June) Required of sophomores.

A two-week excursion to the iron ranges for practice in field methods, such as tracing contacts, working out structures, and constructing and interpreting geologic maps.

4. HISTORICAL AND ECONOMIC GEOLOGY Three credits (three lectures a week) PROFESSOR HALL AND MR. SOPER First semester

Required of juniors.

1. The application of geodynamics to rock structure, folding, deformation and metamorphism. The application of these principles to the formation and deposition of mineral deposits. A study of the characteristic features of the successive ages of geologic history.

2. A study of the distribution, occurrence, and uses of the non-metallic minerals, including a discussion of prospecting for these minerals and the usual methods of geological mapping. Lectures, recitations, and reading with local excursions to neighboring quarries.

9. ELEMENTS OF ROCK STUDY

Two credits (four laboratory hours per week)

Open to students completing 3. Required of juniors.

Structures, textures, mineral and chemical composition of rocks.

A practical study of rock types, with laboratory and field practice.

A study of their origin, occurrence, variation, and alteration, with view to accurate description. Introduction to the use of the microscope. Kemp's Hand Book of Rocks, and reference reading.

10. PETROGRAPHY

Two credits (four laboratory hours per week) Open to students completing 9. Required of juniors.

The application of optical study of minerals to the description of crystalline rocks. Rock structures as seen with microscope. Alteration of rocks. The stratigraphic relation of rocks, and an examination of some Minnesota groups of crystalline rocks. Preparation of material for microscopic study. Luquer's Minerals in Rock Sections, and reference readings

MR. SOPER

MR. SOPER

Second semester

MR. BOWLES First semester

MR. BOWLES Second semester

12. ORE DEPOSITS

Four credits (four lectures per week)

MR. SOPER First semester

MR. SOPER

Open to students completing 10. Required of seniors.

History of mineral discovery and development in the Americas; a discussion of the origin and distribution of ore deposits, embracing the chemical processes involved in their formation and subsequent alterations. A description of the geology and mineralogy of ore bodies, particularly those yielding gold, silver, copper, iron, lead, and zinc. Kemp's Ore Deposits.

13. SPECIAL PROBLEMS

Two credits (four laboratory hours per week) Second semester Open to students completing 12. Required of seniors in E. M. and E. M. (Geology) courses.

The investigation of problems, involving the field and laboratory work of some particular formation and reading incident to the study of the material collected. The methods of systematically recording and interpreting geological and mineralogical data as observed in the field; keeping of notebook, preparation of geological maps, profiles, and sections will be taught.

PHYSICS

JOHN ZELENY, Ph. D., Professor of Physics WILLIAM F. HOLMAN, Ph. D., Instructor in Physics L. W. MCKEEHAN, B. S., Instructor in Physics

1. GENERAL PHYSICS PROFESSOR JOHN ZELENY AND MR. HOLMAN Three credits (three hours per week) First semester Open to students who have completed mathematics 6. Required of sopho-

More success of colids and fluids heat and sound . This is the fret part of an

Mechanics of solids and fluids, heat and sound. This is the first part of an elementary course in physics, designed for those who do not intend to pursue the subject longer than one year. The course is experimental rather than mathematical and gives the student a general knowledge of the fundamental principles of the subject. There will be one experimental lecture and two recitations each week.

2. GENERAL LABORATORY PRACTICE

One credit (two hours per week)

MR. MCKEEHAN First semester

Open to students taking course 1. Required of sophomores.

. Physical measurements in the mechanics of solids and fluids, and in heat and sound, giving the student a knowledge of experimental methods.

3. GENERAL PHYSICS PROFESSOR JOHN ZELENY AND MR. HOLMAN Three credits (three hours per week) Second semester Open to students who have completed course 1. Required of sophomores. Light, electricity and magnetism. This is the second part of the elementary

course begun under course 1. The treatment is experimental and the fundamental principles of the subjects, including those of radioactivity, ionization, X radiation, and the electrical constitution of matter, are discussed and illustrated. There will be one experimental lecture and two recitations each week.

GENERAL LABORATORY PRACTICE	MR. MCKEEHAN
One credit (two hours per week)	Second semester
Open to students taking course 3.	Required of sophomores.

52

Physical measurements in light, electricity and magnetism, giving the student a knowledge of experimental methods.

RHETORIC AND PUBLIC SPEAKING

JOSEPH M. THOMAS, Ph. D., Professor, Head of Department of Rhetoric and Public Speaking

CHARLES W. NICHOLS, M. A., Instructor in Rhetoric

15. RHETORIC AND COMPOSITION Eight credits (four hours per week) MR. NICHOLS Both semesters

Required of first-year students.

This course is planned with special reference to the needs of students of the School of Mines. Two hours a week will be given to the study of English composition, and two hours to the study of a general survey of English literature. Essays will be required every week.

While in the study of literature one object will be the general broadening of the mind by an acquaintance with the masterpieces of English prose and poetry, especial attention will be given to the work of those writers who have handled scientific subjects with clearness and power.

Students

SENIORS-27

Abbott, Theodore S., St. Paul Anderson, Joseph, Florence Anderson, Walter C., Hopkins Bailey, Paul T., Minneapolis Baker, Emory P., Minneapolis Beck, Chas. S., Lewiston Borgeson, Anshelm C., Minneapolis Burgess, Robert J., Minneapolis Crouse, Charles Stevens, Minneapolis Drake, George M., Madelia Ekloff, Victor E., Cokato Elliot, Jay R., Minneapolis Fixen, Victor L., Minneapolis Whitson, Lloyd R., Fergus Falls

Fosness, Arthur W., Lakefield Hill, Arthur S., Minneapolis Hurley, John J., Pine City Jahn, William F., Winona Kingsley, Neil S., Minneapolis Lindholm, Milton S., Ortonville McCullough, Ervin W., St. Paul Rahilly, Harold J., Minneapolis *Swartz, Samuel G., St. Paul Tetlie, John R., Staples Walker, E. Harold, Minneapolis Walters, Chas. W., St. Paul Wehr, Arthur J., Lake Shore

JUNIORS-26

Bjorge, Guy N., Duluth Cohen, Julius M., St. Paul Coventry, Edward D., Duluth Dickson, Robert H., Minneapolis Hagstrom, Leonard J., Minneapolis Harrington, Geo. L., Langdon Hayward, Josiah E., St. Cloud Hewitt, Ezra A., Minneapolis Kennedy, Charles T., Eau Claire, Wis. Knox, Lafayette F., Grand Rapids Kremer, Edward G., Grand Rapids Lea, John, Minneapolis Lewis, John W., Minneapolis

McAdams, Howard R., Minneapolis Martin, Lynn U., Grand Meadow O'Brien, J. Chas., St. Paul Olson, Walter S., St. Paul Perry, Joe B., Minneapolis Prouty, Roswell W., St. Paul Quinn, Max F., Spokane, Wash. Stevens, Howard E., Stillwater Taylor, W. L., Dundas Victor, Albin F., Lindstrom Wallinder, Arthur, Duluth Walter, Rollie B., Delano Woodis, Clark N., Amboy

SOPHOMORES-25

Anderson, Arthur P., Minneapolis Bentley, Frank C., Albert Lea Coady, Leo J., Pattin, Maine Ekstrom, Alex. J., Hibbing Ely, Robert H., Duluth Fields, Howard H., St. Paul Hammond, Arthur H., Minneapolis Hanson, J. Bernard, Minneapolis

*Died January 5, 1911

Harvey, Harry J., Duluth Haugan, Albert C., Hanska Hondrum, Olaf, Bemidji Ladd, Greeley, Minneapolis Larson, John Ed., Minneapolis McCormack, Clyde P., Minneapolis Michie, Roy G.. Montevideo Nissen, Arvid E., Minneapolis

Nordale, Carl E., Minneapolis Ofsthun, Norman H., Glenwood Paddack, Donald, Duluth Quinlan, Howard, St. Paul

s Robertson, John H., St. Paul schultze, Max F., Walker Smith, Ralph W., St. Paul Walker, Charles A., Brainerd Williams, J. H., Ely

FRESHMEN-12

Amidon, Richard G., Minneapolis	Ravicz, Louis, Minneapolis
Benton, Sam, Bisbee, Ariz.	Richard, Charles L., Stillwater
Bierman, Alfred, Litchfield	Speaker, Raymond, Wayzata
Chatfield, William E., Minneapolis	Van Cleve, R. H., Minneapolis
Larson, Ernest L., Akeley	Vorck, Charles R., St. Paul
Potter, Orrin W., St. Paul	Williams, Paul S., Lake Benton

FIRST-YEAR CLASS-15

Buresh, Charles E., Lakefield Butler, William V., Little Falls Collins, Leon T., Pine Island Davidson, Harry T., Minneapolis Dopp, Lawrence, Ashland, Wis. Harmon, Sidney E., St. Paul Heilig, Louis S., Minneapolis

 field
 Johnson, Fred C., Willmar

 Falls
 Kerr, Charles D., St. Paul

 and
 Lee, Martinus, Minneapolis

 neapolis
 Montgomery, Daniel, Worthington

 d, Wis.
 Nelson, Elmer C., Little Falls

 Paul
 Nord, Harry H., Ashland, Wis.

 is
 Scott, William L., St. Paul

 Weinhagen, Carl, St. Paul

FEB 26 1331 I'M' FR. IX SE HILL. IS.

M66wzmi 1912/13 The University of Minnesota

THE SCHOOL OF MINES

1912-1913 FED 26 1331

THE LICARRY OF ----

UN" FROTY FILL IS.

BULLETIN OF THE UNIVERSITY OF MINNESOTA VOL. XV, NO. 7. JUNE 1912

> Entered at the Post Office in Minneapolis as second-class matter MINNBAPOLIS, MINN,

The University catalogues are published by authority of the Board of Regents, as a regular series of bulletins. One bulletin for each college and one for the Summer Session is published every year and in addition a bulletin of general information outlining the entrance requirements of all colleges of the University, and embodying such items as University equipment, organizations and publications, expenses of students, loan and trust funds, scholarships, prizes, etc. Bulletins will be sent gratuitously, postage paid, to all persons who apply for them. In calling for bulletins, the college or school of the University concerning which information is desired should be stated. Address,

THE REGISTRAR,

The University of Minnesota, Minneapolis, Minnesota

The University of Minnesota

THE SCHOOL OF MINES

1912-1913

THE LIBRARY OF THE FEB 2.6. 1931

BULLETIN OF THE UNIVERSITY OF MINNESOTA VOL. XV, NO. 7. JUNE 1912

Entered at the Post Office in Minneapolis as second-class matter MINNEAPOLIS, MINN.

1912				1913												
J	ULY		JANUARY					JULY								
Su Mo Tu		Sa	Su	Mo	Tu	W	Th	Fr	Sa	Su	Mo	Tu	W	Th	Fr	Sa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 13 20 27 	5 12 19 26	 13 20 27	··· 7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25 	6 13 20 27	· · · 7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25 	5 12 19 26
AU	GUST			FEBRUARY				AUGUST								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 7 8 9 14 15 16 21 22 23 28 29 30	3 10 17 24 31		3 10 17 24	 4 11 18 25	 5 12 19 26	 6 13 20 27	· · · 7 14 21 28	1 8 15 22	··· 3 10 17 24 31	 4 11 18 25	· · · 5 12 19 26	 6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30
SEPT	EMBER				M	AR	СН				SI	EPT	EN	IBE	R	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 5 6 11 12 13 18 19 20 25 26 27 OBER 2 3 4 9 10 11 16 17 18 23 24 25 30 31	 5 12 19 26	16 23 30 ··· 6 13 20	31 7 14 21	1 8 15 22	 5 12 19 26 PRI 2 9 16 23 30	 6 13 20 27 L 3 10 17 24 	14 21 28 4 11 18 25 	1 8 15 22 29 5 12 19 26 	··· 7 14 21 28 ··· 5 12 19 26 ···	1 8 15 22 29 6 13 20 27 	2 9 16 23 30 OC 7 14 21 28	3 10 17 24 FOI 1 8 15 22 29 	4 11 18 25 3EF 2 9 16 23 30 	5 12 19 26 3 10 17 24 31	6 13 20 27 4 11 18 25
NOVE	MBER		MAY				NOVEMBER									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 6 7 8 13 14 15 20 21 22 27 28 29	23	18	19	 6 13 20 27 	· · 7 14 21 28 	1 8 15 22 29 	2 9 16 23 30 	3 10 17 24 31	··· 9 16 23 30	··· 3 10 17 24 	 4 11 18 25 	 5 12 19 26 	 6 13 20 27 	· · · 14 21 28 	1 8 15 22 29
DECEMBER				JUNE									BEI			
15 16 17	18 19 20	28	22	16	3 10 17 24 	4 11 18 25	5 12 19 26	6 13 20 27 	7 14 21 28	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27

UNIVERSITY CALENDAR

1912-1913

The University year covers a period of thirty-eight weeks, beginning on the second Tuesday in September. Commencement Day is always the second Thursday in June.

1012

1912			
September	3	Tuesday	Registration closes except for new students
September	3-10	Week	Fees payable except for new students
September	10-16	Week	Entrance examinations, registration
			of new students, and payment of fees
September	11-17	Week	Military encampment of cadets
September	18	Wednesday	First semester begins
November	27	Wednesday	Thanksgiving recess begins 6:00 p.m.
December	2	Monday	Thanksgiving recess ends 8:00 a. m.
December	20	Friday	Christmas vacation begins 6:00 p.m.
1913			
January	7	Tuesday	Christmas vacation ends 8:00 a.m.
January	21	Tuesday	Registration for second semester closes
January	27	Monday	Final examinations begin
January	28	Tuesday	Payment of fees for second semester
			closes
February	5	Wednesday	Second semester begins
February	12	Wednesday	Lincoln's Birthday: a holiday
February	13	Thursday	First semester class reports due
February	22	Saturday	Washington's Birthday: a holiday
March	19	Wednesday	Easter recess begins 6:00 p.m.
March	27	Thursday	Easter recess ends 8:00 a.m.
May	30	Friday	Decoration Day: a holiday
June	2	Monday	Final examinations begin
June	7	Saturday	Second semester closes
June	8	Sunday	Baccalaureate service
June	9	Monday	Senior class day exercises
June	11	Wednesday	Alumni Day
June	12	Thursday	Forty-first Annual Commencement
June	13	Friday	Summer vacation begins

The University year for 1913-14 will begin Tuesday, September 9.

3

Program of Entrance Examinations 1912-13

When entrance examinations are required this schedule will be followed:

Tuesday,	Sept. 10	9 a. m.	Astronomy, Botany, Geology, Chem- istry, Physiography, Zoology
		2 p. m.	American Government, History, Phys-
			ics, Economics, Commercial Geog-
			raphy
Wednesda	y, Sept. 11	9 a.m.	English
		2 p. m.	German, French, Latin, Scandinavian
Thursday,	Sept. 12	9 a.m.	Elementary Algebra
		2 p. m.	Higher Algebra
Friday,	Sept. 13	9 a.m.	Plane Geometry
		2 p. m.	Solid Geometry
Thursday,	June 5, 1913	9 a.m.	Elementary Algebra
		2 p. m.	Higher Algebra
Friday,	June 6, 1913	9 a.m.	Plane Geometry
		2 p. m.	Solid Geometry

All candidates for examinations should report at the scheduled time in Room 205, Library Building, except in the case of Mathematics.

Examinations in Mathematics are held in Room 24, School of Mines Building.

Program of Supplementary Example	ami	y Exa	lementary	ÞÞİ	Su	of	Program	1
----------------------------------	-----	-------	-----------	-----	----	----	---------	---

Tuesday,	Sept. 10	9-12 a.m.	Mechanics and Mathematics
		2-5 p. m.	Mining Engineering Subjects
Wednesday,	Sept. 11	9-12 a.m.	Chemistry
		2-5 p. m.	Drawing and Descriptive Geometry
		2-5 p. m.	Mechanical Engineering Subjects
Thursday,	Sept. 12	9-12 a.m.	Metallurgical Subjects
		2-5 p. m.	Physics
Friday,	Sept. 13	9-12 a.m.	Electrical Engineering Subjects
		2-5 p. m.	Geology and Mineralogy

THE UNIVERSITY

THE UNIVERSITY OF MINNESOTA comprises the following named schools, colleges, and departments:
THE COLLEGE OF SCIENCE, LITERATURE, AND THE ARTS
THE COLLEGE OF ENGINEERING AND THE MECHANIC ARTS
THE DEPARTMENT OF AGRICULTURE, including-
THE COLLEGE OF FORESTRY, including— FOREST EXPERIMENT STATIONS AT ITASCA AND CLOQUET
THE SCHOOL OF AGRICULTURE, including-
THE DAIRY SCHOOL
THE SHORT COURSE FOR FARMERS
TEACHERS' SUMMER TRAINING SCHOOL
THE SCHOOL OF TRACTION ENGINEERING THE SCHOOL OF AGRICULTURE, CROOKSTON
THE SCHOOL OF AGRICULTURE, MORRIS
THE EXPERIMENT STATIONS, including-
THE MAIN STATION AT ST. ANTHONY PARK
THE SUB-STATION AT CROOKSTON
THE SUB-STATION AT GRAND RAPIDS
THE SUB-STATION AT DULUTH
THE SUB-STATION AT WASECA THE SUB-STATION AT ZUMBRA HEIGHTS
AGRICULTURAL EXTENSION
BUREAU OF RESEARCH IN AGRICULTURAL ECONOMICS
THE LAW SCHOOL
THE COLLEGE OF MEDICINE AND SURGERY, including- THE SCHOOL FOR NURSES
THE COLLEGE OF DENTISTRY
THE COLLEGE OF PHARMACY
THE SCHOOL OF MINES, including-
MINNESOTA SCHOOL OF MINES EXPERIMENT STATION
THE SCHOOL OF ANALYTICAL AND APPLIED CHEMISTRY
THE COLLEGE OF EDUCATION
THE GRADUATE SCHOOL

THE GEOLOGICAL AND NATURAL HISTORY SURVEY

THE BOARD OF REGENTS

The Hon. JOHN LIND, Minneapolis, President of the Board	-	-	1914
George Edgar VINCENT, Ph.D., LL.D., Minneapolis -	-	Ex-O	fficio
GEORGE EDGAR VINCENI, III. D., DD., D., Hinner prov			
The President of the University	-	Ex-C)fficio
The Hon. Adolph O. EBERHART, Mankato		2	Deere
The Governor of the State		Ex-C	ficio
The Hon. C. G. SCHULZ, St. Paul	-	Ex-C	Jucio
The State Superintendent of Public Instruction			1010
The Hon. W. J. MAYO, Rochester	-	-	1913
The Hon. MILTON M. WILLIAMS, Little Falls	-	-	1913
The Hon. HENRY B. HOVLAND, Duluth	-	-	1914
The Hon. HENRY D. HOVERND, Dunton	-	-	1915
The Hon. A. E. RICE, Willmar	-	- 1	1915
The Hon. CHARLES L. SOMMERS, St. Paul	· _	_	1916
The Hon. B. F. NELSON, Minneapolis			1916
The Hon. PIERCE BUTLER, St. Paul	-	-	1916
The Hon. CHARLES A. SMITH, Minneapolis	-	-	1910

EXECUTIVE OFFICERS

GEORGE EDGAR VINCENT, Ph.D., LL.D., President

- ERNEST B. PIERCE, B.A., Registrar
- GEORGE H. HAVES, University Comptroller and Secretary of the Board of Regents

JAMES T. GEROULD, B.A., Librarian

JOHN F. DOWNEY, M.A., C.E., Dean of the College of Science, Literature, and the Arts

FRANCIS C. SHENEHON, C.E., Dean of the College of Engineering and Mechanic Arts

ALBERT F. WOODS, M.A., Dean and Director of the Department of Agriculture

WILLIAM R. VANCE, Ph.D., LL.B., Dean of the Law School

FRANK FAIRCHILD WESBROOK, M.A., M.D., C.M., Dean of the College of Medicine and Surgery

ALFRED OWRE, B.A., M.D., C.M., D.M.D., Dean of the College of Dentistry

FREDERICK J. WULLING, Phm.D., LL.M., Dean of the College of Pharmacy WILLIAM R. APPLEBY, M.A., Dean of the School of Mines

GEORGE B. FRANKFORTER, M.A., Ph.D., Dean of the School of Chemistry GEORGE F. JAMES, Ph.D., Dean of the College of Education

HENRY T. EDDY, C.E., Ph.D., LL.D., Dean of the Graduate School

ADA L. COMSTOCK, M.A., Dean of Women

THE SCHOOL OF MINES

FACULTY

GEORGE EDGAR VINCENT, Ph.D., LL.D., President 1005 5th St. S. E.
CYRUS NORTHROP, LL.D., President Emeritus 519 10th Ave. S. E. WILLIAM R. APPLEBY, M.A., Dean and Professor of Metallurgy
911 5th St S E
CHARLES E. VAN BARNEVELD, B.A.Sc., E.M., Professor of Mining Engi-
neering 2110 Aldrich Ave S
CHARLES W. BENTON, Litt.D., Professor of Romance Languages
PETER CURVETUNE D.C. D.M. D. C. D.
PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy
ELTING H. CONSTROL M.S. Dufens (1) I. 1. 208 Beacon St. S. E.
ELTING H. COMSTOCK, M.S., Professor of Mechanics and Mathematics
WILLIAM H. EMMONS, Ph.D., Professor of Mineralogy and Geology
JOHN J. FLATHER, Ph.B., M.M.E., Professor of Mechanical Engineering
315 11th Ave. S. E.
George B. FRANKFORTER, Ph.D., Professor of Chemistry
525 E. River Road
WILLIAM H. KAVANAUGH, M.E., Professor of Experimental Engineering
118 State St S E
WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive
Geometry 217 Beacon St. S. F.
EDWARD P. McCarty, E.M., Professor of Mining 428 8th St. S.
JOHN G. MOORE, B.A., Professor of German
2810 University Ave. S. E. LEVI B. PEASE, M.S., Professor of Metallurgy 1070 16th Ave. S. E.
GEORGE D. SHEPARDSON M.A. M.F. Dufference (1970) 16th Ave. S. E.
GEORGE D. SHEPARDSON, M.A., M.E., Professor of Electrical Engineering
CHARLES F. SIDENER, B.S., Professor of Chemistry 717 E. River Road 1320 5th St. S. E.
JOSEPH M. THOMAS, Ph.D., Professor of Rhetoric 1320 5th St. S. E.
623 14th Ave. S. E.
JOHN ZELENY, Ph.D., Professor of Physics 712 10th Ave S E
FRANCIS C. FRARY, Ph.D., Assistant Professor of Chemistry
1307 6th St S F
JULES T. FRELIN, B.A., Assistant Professor of Romance Languages
112 Church St. S. E.
FRANK F. GROUT, M.S., Assistant Professor of Geology and Mineralogy
1202 7th St. S. E.

MERTON S. KINGSTON, E.M., Assistant Professor of Mining

1206 7th St. S. E.

EDWIN M. LAMBERT, M.E., Assistant Professor of Mechanics and Mathematics

WILLIAM T. RYAN, E.E., Assistant Professor of Electrical Engineering 3228 4th St. S. E.

FREDERICK W. SARDESON, Ph.D., Assistant Professor of Paleontology

414 Harvard St. S. E.

S. CARL SHIPLEY, B.S., M.E., Assistant Professor of Machine Construction 1517 E. River Road

CHARLES F. SHOOP, B.S., Assistant Professor of Experimental Engineering 108 Beacon St. S. E.

INSTRUCTORS

OLIVER BOWLES, M.A., Instructor in Mineralogy a	nd Geology
	321 19th Ave. S. E.
PAUL H. MP. BRINTON, Instructor in Chemistry	608 13th Ave. S. E.
LILLIAN COHEN, M.S., Instructor in Chemistry	415 E. 14th St.
ROBERT W. FRENCH, B.S., Instructor in Drawing	
	1035 13th Ave. S. E.
ERVIN W. MCCULLOUGH, E.M., Instructor in Min	ing
	0 Malcolm Ave. S. E.
FRANKLIN R. MCMILLAN, C.E., Instructor in Exp	0 0
	321 Oak St. S. E.
EDMUND NEWTON, E.M., Instructor in Metallu	0.
	University Ave. S. E.
PETER E. PETERSON, Instructor in Foundry Pract	
	3709 Clinton Ave.
WARREN T. POWELL, M.A., Instructor in Rhetoric	
EDWARD P. QUIGLEY, Instructor in Forge Work	2442 15th Ave. S.
WILLIAM H. RICHARDS, Instructor in Carpentry	1423 W. 27th St.
FRANK B. ROWLEY, B.S., M.E., Instructor in Draw	ing
	414 Oak St. S. E.
JAMES COXE SANDERSON, Ph.D., Instructor in Physic	cs
	710 13th Ave. S. E.
JULIUS H. SANTO, E.M., Instructor in Mechanics ar	nd Mathematics
	1406 7th St. S. E.
EDGAR K. SOPER, B.A., Instructor in Economic Ge	
	417 Union St. S. E.

WINIFRED GREGORY, Librarian

ADMISSION

The courses leading to the degrees of Engineer of Mines and Metallurgical Engineer may be completed in either four or five years. The course leading to the degree of Engineer of Mines (in Geology) may be completed in five years.

Students may enter the School of Mines without preparation in Higher Algebra and Solid Geometry. Such students must enter the five-year courses.

Students who enter the four-year courses with Higher Algebra and Solid Geometry must pass the entrance examinations in Mathematics given by the School. State High School Board certificates will be accepted for all subjects except Mathematics.

It is recommended that students who come poorly prepared in Mathematics enter the five-year courses.

Examinations for admission in subjects other than Mathematics will be held at the beginning of the year. Examinations in Mathematics are held in June and September. See calendar and program of examinations.

No senior will be registered for first semester's work after September 10, 1912.

No other students will be registered for the first semester's work after September 28, 1912, nor any student for the second semester's work after February 15, 1913.

All applicants should present themselves to the Dean of the School of Mines, Room 27, School of Mines Building, who will furnish them with application blanks and directions covering examinations and registration.

Women will not be admitted to any course offered in the School of Mines.

GENERAL REGULATIONS GOVERNING ADMISSION

- I. Students will be admitted to the freshman class on passing the regular entrance examinations.
- II. No student will be admitted if conditioned in more than three half-year subjects, or their equivalent. No conditions, however, in entrance Mathematics shall be allowed except upon special permission of the Department of Mathematics.
- III. Graduates of any Minnesota State High School will be admitted to the five-year courses without examination, or to the four-year courses with examination in Mathematics, provided:

(1) That the school maintain a full four-year course of high school work.

(2) That the applicant present to the Registrar the principal's certificate showing the satisfactory completion of all studies required for admission to the desired University course.

- IV. Graduates of Minnesota State High Schools who are deficient in not more than three half-year subjects or their equivalent, may be excused from entrance examinations in such subjects as the Enrollment Committee may decide upon; such candidates should present themselves to the Committee not later than Tuesday of examination week.
- V. Graduates of Minnesota State High Schools whose principal's certificate shows them to be deficient in more than three half-year subjects or their equivalent, even though they have made such additional preparation as they deem necessary, must take, nevertheless, the regular entrance examination in all subjects, as provided in Sections I and II, unless excused by vote of the Faculty; and persons wishing to present reasons for such excuse should report to the Enrollment Committee not later than Tuesday of examination week.
- VI. Graduates of the Advanced Courses of Minnesota Normal Schools will be admitted upon the same terms as graduates of State High Schools.
- VII. Any Minnesota High School or Academy not under supervision of the State High School Board, but requiring for graduation a four years' course, exclusive of the common school branches, conforming essentially in distribution of time to the entrance requirements of at least one of the University courses, will, upon application, be inspected by a committee, and, after favorable recommendation, may be accredited by the Faculty in all respects as are the State High Schools, provided:

(1) That the school be open to inspection at any time by the University.

(2) That it take such supplementary examinations as may be prescribed from time to time.

- VIII. Graduates from schools in other states, whose diplomas admit to reputable colleges in the state in which the school is located, will be received subject to the regulations that apply to graduates of Minnesota State High Schools.
- IX. Applicants coming from schools not included in any of the above classes must take the regular entrance examinations or present State High School Board certificates.

In all cases the Faculty reserves the right to require a student to take supplementary examinations if he does not sustain himself creditably in his course.

The Enrollment Committee will meet every day during the week commencing Tuesday, September 10th, in School of Mines Building, Room 27, at 9 o'clock, a. m.

REQUIREMENTS FOR ADMISSION TO THE FIVE-YEAR COURSES

The term *unit* means not less than five recitations of forty minutes each per week for a period of thirty-six weeks. In manual subjects and

ADMISSION

kindred courses, it means the equivalent of ten recitation periods per week for thirty-six weeks. Required Subjects: English*four units Elementary Algebra.....one unit Plane 'Geometry.....one unit Electives......nine units

REQUIREMENTS FOR ADMISSION TO THE FOUR-YEAR COURSES

Denvined Subjector

Required Subjects:
English*four units
Elementary Algebraone unit
Higher Algebraone-half unit
Plane Geometryone unit
Solid Geometryone-half unit
Electiveseight units
Electives. (Eight units must be selected from this list for the four-year
courses and nine units for the five-year courses.)
Latin
Grammar, one unit
Caesar, four books, one unit
Cicero, six orations, one unit
Virgil, six books, one unit
Greek
Grammar, one unit
Anabasis, four books, one unit
German
Grammar, one unit
Literature, one to three units
French
Grammar, one unit
Literature, one to three units
Spanish
Grammar, one unit
Literature, one unit
Scandinavian Languages
Grammar, one unit
Literature, one unit
History
Ancient, to Charlemagne, one unit
Modern, from Charlemagne, one unit
English, one-half unit
Senior American, one-half unit

*Three units will satisfy the English requirement when the applicant presents four units in one foreign language. In this case a sufficient number of electives must be presented to make a total of fifteen entrance units. American Government, one-half unit

Elementary Economics, one-half unit

History of Commerce, one-half unit

Commercial Geography, one-half or one unit

Physics, one unit

Chemistry, one unit

Botany, one-half or one unit

Zoology, one-half or one unit

Astronomy, one-half unit

Geology, one-half unit

Physiography, one-half unit

Not more than four units are allowed in the following vocationa, subjects, including Business Subjects, Manual Subjects, Domestic Sciencel and Agriculture.

Business Subjects

Business Law, one-half unit

Business Arithmetic, one-half unit

Elementary Bookkeeping, one-half unit

Advanced Bookkeeping and Business Practice, one unit

Stenography and Typewriting, two units

Manual Subjects

Freehand Drawing, two units

Mechanical Drawing, two units

Shop Work, two units

Modeling and Wood Carving, one unit

Domestic Art and Science, two units

Agriculture

One to four units from schools receiving special state aid for Agriculture, and also from other schools in which such course in Agriculture is approved by the State High School Board, as fast as the said schools are prepared to offer work in Agriculture.

DESCRIPTION OF SUBJECTS ACCEPTED FOR ADMISSION

A description of the subjects accepted for admission to the University will be found in the Bulletin of General Information, which will be sent to any address upon application to the Registrar, The University of Minnesota, Minneapolis, Minnesota.

ADVANCED STANDING

The University accepts records from other colleges for credit to advanced standing. Such records are accepted as far as they are equivalent to the work in this University, subject to the approval of the departments concerned. In bringing records from other institutions, the certificates must be on the official blanks of the institution granting the certificate, and should show: 1. The subjects studied and ground covered.

2. The time spent upon each subject.

3. In case of laboratory subjects, a concise statement of work done.

4. The result. It is sufficient to state the subjects were creditably completed.

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrollment Committee.

DAILY ROUTINE

The daily session is divided into eight recitation periods of fifty minutes each, four in the morning and four in the afternoon. The morning session begins at 8:00 and closes at 12:00 o'clock; the afternoon session extends from 1:00 o'clock until 5:50 o'clock. A general assembly of the Faculty and students is held at 12:00 o'clock on Tuesdays, Thursdays, and Saturdays, at which there are brief and simple religious exercises. The noon hour extends from 12:00 to 1:00 o'clock. Work extends through six days of the week.

EXAMINATIONS

Students failing to receive a semester mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the Registrar his yearly average in all subjects and present himself for supplementary examinations, according to the program given on page 4.

No other supplementary examination will be given. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to receive a semester mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The Faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

All students who voluntarily register for Military Drill shall be required to drill the entire year and be subject to the same rules and regulations as other cadets. Such students must receive credit or honorable dismissal from the department before graduating.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination at the end of the first or second semester will be given zero on the examinations.

Students whose absences in either semester exceed four weeks in the aggregate are not permitted to take examinations without special permission of the Faculty.

A fee of five dollars per subject is required for each special examination.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

GRADUATION

Students completing courses of study to the satisfaction of the Faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examinations in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least one full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the Faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examinations held at the end of the second semester. Irregular attendance will debar a student from entering all final examinations.

THESES

The thesis work is intended to bring in review and connect the work in Mining and Metallurgy, Geology and Mineralogy, Mechanical and Electrical Engineering, Mathematics and Mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem for candidates for the degree of Metallurgical Engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

ADMISSION

Prior to the re-opening of Field Work at the School of Mines, Tuesday, September 10, 1912, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to clearly represent the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester senior year will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in first semester senior year.

All preliminary work must be done and final work on project must be under way by December 1st. On April 7th the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30th. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the School.

SPECIAL INFORMATION

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of Engineer of Mines (E.M.), Engineer of Mines in Geology [E. M. (Geology)], and Metallurgical Engineer (Met. E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four or five years, and vice versa, provided such candidate completes an additional year's work at the School and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and Mechanic Arts, and in the School of Technical and Applied Chemistry, who contemplate taking a degree in this School after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

SUMMARY OF EXPENSES

FIRST YEAR FIVE-YEAR COURSES

*Incidental fee\$55.	00
Books (Estimated) 20	00
Note books and supplies (Estimated)	00

FRESHMAN YEAR

*Incidental fee\$55.00	
Books (Estimated) 25.00	
Draughting instruments (Estimated) 15.00	
Note books and supplies (Estimated) 5.00	

SOPHOMORE YEAR

*Incidental fee				
Field work	Surveying	100.00 to	150.00	
Field workSurveying(May 1st to July 1st)Geological				
Books (Estimated)			15.00	
Note books and suppli	ies (Estimated)		5.00	

JUNIOR YEAR

*Incidental fee\$55.0	
Field Work Metallurgy 175.00 to 250.0	0
(May 1st to July 1st) Mining	
Books (Estimated)	0
Note books and supplies (Estimated) 5.0	0

*This fee covers all laboratory expenses.

SENIOR YEAR

*Incidental fee		\$55.00
Books (Estimated)		30.00
Note books and supplies	(Estimated)	5.00

In addition to the first semester incidental fee a deposit fee of \$5.00 is required to cover such items as annual rental of post office box, locker key deposit, condition examination fee, and late registration or late payment of fees. The unused balance will be returned at the end of the year.

ORGANIZATION

The organization of the School of Mines dates back to 1889, when the General Faculty of the University recommended to the Board of Regents its establishment. In 1891 the Legislature of the State of Minnesota voted an appropriation for establishing and equipping the School. Two annual appropriations have since been made for its support. The Legislature of 1901 appropriated \$47,500 for a new School of Mines Building. In 1903 the Legislature appropriated \$25,000 for completing and equipping the School of Mines Building, and in 1905 an additional sum was provided for equipment.

EXPERIMENT STATION

The School of Mines Experiment Station has been recently established to promote the development of the mining and mineral resources of the State, to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates for the Tax Commission and to do such other work along the lines above outlined as may be requested by other state departments. Co-operation has been effected with the Minnesota Geological Survey and the School of Chemistry.

The Experiment Station is prepared to assist citizens interested in these lines of work; to assay specimens of ore, rocks, clays, and minerals found within the State free of charge.

In submitting samples the sender must state the exact location where each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the Office of the Station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

*This fee covers all laboratory expenses.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, The University of Minnesota, Minneapolis, Minnesota.

THE SCHOOL OF MINES BUILDING

The School of Mines Building is designed to accommodate only the technical work of the School of Mines, as adequate building accommodations and equipment have already been furnished for Chemistry, Geology, Mineralogy, Drawing, and Mechanical and Electrical Engineering. The building is 150 feet long by 65 feet wide. It is a brick building three stories high. The lower floor is occupied by the assaying and metallurgical laboratories; the second floor contains offices, two large lecture rooms, a department library, and a museum; the third floor provides two quiz rooms, a large well-lighted draughting room, a thesis room, a dark room, and a blue print room. This building makes possible the development of the work already begun and offers facilities for more extended work along technical lines.

LOCATION

The University of Minnesota is located in the city of Minneapolis, on the east bank of the Mississippi River. The School of Mines has its buildings and laboratories on the same ground. Students of the School of Mines have, therefore, all the opportunities afforded by a large university.

Minneapolis is surrounded by, and is in direct communication with, several important mining and smelting districts. As the city is a railroad center, all possible transportation facilities are available.

FIELD WORK

Field work is conducted at the iron mines in the northern part of this State, in the copper and iron regions of Michigan, in the mines and smelters of Montana, Colorado, Utah, Arizona, and California, and in the coal mines of Pennsylvania.

At least one of these districts will be visited by each class, affording splendid opportunities for study and observation.

The field work in Mining and Metallurgy consists of two trips, one at the close of the sophomore year and one at the close of the junior year. For details, see pages 26 and 32. Students must deposit with Cashier, at least two weeks before time set for departure of class, a sum sufficient to cover following expense items:

1st. Board and lodging.

2d. Necessary mine supplies.

Transportation and incidental expenses are not included in the above items and must be met individually.

A statement of expenditures will be rendered at the close of the work and any balance existing will be refunded.

The amount of deposit required will vary according to the locality visited, and will be announced each year when arrangements for the trip are completed.

THE ELLIOT SCHOLARSHIP LOAN FUND

To fulfill the wish of the late Dr. A. F. Elliot to aid young men who find their efforts to obtain a practical education embarrassed through lack of means, the sum of \$5,000 was placed in the hands of the Board of Regents as a scholarship fund. The income from this fund is loaned students in the School of Mines on the following conditions: the financial needs of the applicant, his scholarship, moral character, enthusiasm shown in his work, and promise of usefulness in his profession. When money is available, it may be loaned to pay the expenses of worthy students during sickness. The loans are to be repaid, without interest, at the earliest convenience of the recipients.

LIBRARY

The library consists of about two thousand five hundred volumes. This number represents only those works that treat directly of mining and metallurgical subjects.

The School has a complete set of the leading mining and metallurgical journals and other similar books of reference. The leading periodicals are accessible to all. Constant references in lectures compel the student to keep himself well informed as to the latest methods, machinery, and changes in practice going on in his special line of work.

In addition to the above, many thousand volumes on Chemistry, Mineralogy, and Geology complete a most valuable working and reference library. A card index is kept of all articles of value and interest appearing in the leading periodicals.

PHOTOGRAPHY

Photographs of surface and underground appliances, metallurgical plants, copies of drawings and other photographs are indispensable to the study of Mining and Metallurgy. With the report of his field work every student is expected to present photographs, as well as sketches, of various objects under consideration. There is also a very complete set of lantern slides illustrating the principal methods of underground workings and metallurgical plants, at home and abroad. Several hundred slides have been made in the department's laboratory which bear directly on the work done in Minnesota and the neighboring northwest. Many valuable photographs are constantly being made. Blue prints of these are given students as illustrations. Much time, usually spent in making sketches and diagrams, is thus saved.

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thorough courses in Mechanics, Mathematics, Physics, Chemistry, Mineralogy and Geology.

(a) Assaying—to determine if ore has value for treatment. (b)
 Mining Engineering—to furnish material for treatment. (c) Ore Testing
 —to determine best methods of treatment. (d) Ore Dressing—furnishing
 products for metallurgical treatment. (e) Metallurgy—smelting and
 refining ores and ore dressing products; reduction to metals.

COURSES IN MINING ENGINEERING

COURSES LEADING TO THE DEGREE OF E.M.

FIRST YEAR-FIVE-YEAR COURSES

First Semester

Chemistry 1, General, six hours. Mathematics 1, Algebra, four hours Mathematics 3, Computation and Mensuration, three hours Mechanical Engineering 3, Foundry Practice, six hours (twelve weeks) Mechanical Engineering 2, Blacksmithing, six hours (six weeks) Rhetoric 15, four hours Spanish 11, Beginning, three hours Second Semester Chemistry 1, General, six hours Mathematics 2, Solid Geometry and Mensuration, three hours Mathematics 4, Mine Accounting, three hours Mechanical Engineering 2, Blacksmithing, six hours (twelve weeks) Mechanical Engineering 1, Carpentry, six hours (six weeks) Rhetoric 15, four hours Spanish 11, Beginning, three hours

FRESHMAN YEAR-FOUR AND FIVE-YEAR COURSES

First Semester

Chemistry 2, General and Qualitative Analysis, five hours Drawing 11, Engineering Drawing, ten hours Mathematics 5, Algebra and Trigonometry, five hours Mineralogy 1, General Mineralogy, eight hours Second Semester Chemistry 3, Qualitative Analysis, seven hours Drawing 12, Engineering Drawing, eight hours Mathematics 6, Trigonometry and Analytic Geometry, five hours Metallurgy 1, Assaying, twelve hours Mineralogy 2, Physical Mineralogy, four hours SOPHOMORE YEAR-FOUR AND FIVE-YEAR COURSES

First Semester

Chemistry 4, Quantitative Analysis, eight hours Drawing 13, Descriptive Geometry, two hours Mathematics 7, Analytic Geometry and Calculus, five hours Metallurgy 2, General and Iron, three hours Mining 1, Mine Surveying, three hours Physics 1, General, three hours Physics 2, Laboratory Practice, two hours Second Semester Chemistry 5, Volumetric Analysis, eight hours Drawing 14, Drafting, four hours

Geology 3, Elements of Geology, three hours

Mathematics 8, Calculus, five hours

Metallurgy 3, Wrought Iron and Steel, three hours

Mining 1, Mine Surveying, three hours

Mining 2, one hour

Physics 3, General, three hours

Physics 4, Laboratory Practice, two hours

Field Work. Months of May, June, July, and August Mining 3, Surveying, beginning about May 1st
Geology 3a, beginning about June 15th
Underground Mining Work, beginning about July 1st

JUNIOR YEAR-FOUR AND FIVE-YEAR COURSES

First Semester

Experimental Engineering 1, Strength of Materials, four hours

Geology 4, Historical and Economic Geology, three hours

Geology 9, Rock Study, four hours

Mechanics 9, five hours

Mechanics 11, Mine Plant, five hours

Metallurgy 4, Base Metals, four hours

Mining 4, five hours

Second Semester

Experimental Engineering 2, Steam Laboratory, four hours

Geology 10, Petrology, four hours

Mechanics 10, five hours

Metallurgy 5, Precious Metals, four hours

Mining 5, five hours

Mining 6, three hours

Mining 7, Ore Dressing, five hours

Mining 8, Mine Mapping, six hours

Field Work. Months of May, June, July, and August Metallurgy 10, beginning about May 1st Mining 9, beginning about May 15th Underground Mining Work, beginning about June 1st

SENIOR YEAR-FOUR AND FIVE-YEAR COURSES

First Semester

Chemistry 14, Special Problems, eight hours

Electrical Engineering 4, Electric Power, five hours

Geology 12, Ore Deposits, four hours

Mechanics 13, Water Power, five hours

Mechanics 15, Engineering Construction, five hours

Metallurgy 6, Ore Testing, ten hours

Mining 10, Mining Engineering, five hours

Mining 13, Thesis, two hours

Second Semester

Chemistry 18, Iron and Steel Analysis, eight hours Experimental Engineering 5, Experimental Laboratory, four hours Geology 13, Special Problems, four hours Mechanics 16, Mine Plant Design, six hours Mining 11, Mining Engineering, five hours Mining 12, Designs and Specifications, eight hours Mining 13, Thesis, four hours

COURSES LEADING TO THE DEGREE OF E. M. (GEOLOGY)

FIRST YEAR

First Semester

Chemistry, 1, General, six hours

Drawing 11, Engineering Drawing, ten hours

French 1 or 3, three hours

or

German 1 or 4, three hours

Mathematics 1, Algebra, four hours

Rhetoric 15, four hours

Second Semester

Chemistry 1, General, six hours

Drawing 12, Engineering Drawing, eight hours

French 1 or 3, three hours

or

German 1 or 4, three hours

Mathematics 2, Solid Geometry and Mensuration, three hours Rhetoric 15, four hours

FRESHMAN YEAR

First Semester

Chemistry 2, General and Qualitative Analysis, five hours French 2 or 5, three hours

or

German 3 or 7, three hours

Mathematics 5, Algebra and Trigonometry, five hours

Mineralogy 1, General Mineralogy, eight hours

Second Semester

Chemistry 3, Qualitative Analysis, seven hours

French 2 or 5, three hours

or

German 3 or 7, three hours

Mathematics 6, Trigonometry and Analytic Geometry, five hours

Metallurgy 1, Assaying, twelve hours

Mineralogy 2, Physical Mineralogy, four hours

SOPHOMORE YEAR

First Semester

Chemistry 4, Quantitative Analysis, eight hours Drawing 13, Descriptive Geometry, two hours Mathematics 7, Analytic Geometry and Calculus, five hours Mineralogy (Advanced), three hours Mining 1, Mine Surveying, three hours Physics 1, General, three hours

Physics 2, Laboratory Practice, two hours

Second Semester

Chemistry 5, Volumetric Analysis, eight hours

Drawing 14, Drafting, four hours

Geology 3, Elements of Geology, three hours

Mathematics 8, Calculus, five hours

Metallurgy, three hours

Mining 1, Mine Surveying, three hours

Mining 2, one hour

Physics 3, General, three hours

Physics 4, Laboratory Practice, two hours

Field Work. Months of May, June, July, and August Mining 3, Surveying, beginning about May 1st Geology 3a, beginning about June 15th Special Geological Field Work, beginning about July 1st

JUNIOR YEAR

First Semester

Geology 4, Historical and Economic Geology, three hours Geology 9, Rock Study, four hours

Geology 9, Rock Study, Iour nou

Mechanics 9, five hours

Mining 4, five hours

Paleontology, three hours

Electives, ten hours

Second Semester

Geology 10, Petrology, four hours

Mechanics 10, five hours

Mining 5, five hours

Mining 6, three hours

Mining 7, Ore Dressing, five hours

Mining 8, Mine Mapping, six hours

Paleontology (Invertebrate), nine hours

Field Work. Months of May, June, July, and August Mining 9, beginning about May 15th Underground Mining Work, beginning about June 1st Practical Geology, beginning about July 1st

SENIOR YEAR

T' 1 C 1

First Semester

Geology 12, Ore Deposits, four hours Geology of Lake Superior District, five hours General and Mining Law, three hours Mechanics 13, Water Power, five hours Mining 10, Mining Engineering, five hours Thesis, ten hours

Second Semester Geology 13, Special Problems, four hours Geology 13a, Seminar in Ore Deposits, three hours Geology of Western Mining Districts, five hours Mining 11, Mining Engineering, five hours Electives, five hours Thesis, ten hours

DEPARTMENT OF MINING ENGINEERING

Mining Engineering extends through the sophomore, junior, and senior years. The subjects given, together with the sequence necessary, are treated in the accompanying outline of the course.

In the senior year, problems in hoisting, hauling, pumping, ventilation, and similar subjects become an important part of the work.

DESIGNS AND SPECIFICATIONS

The student makes, in connection with his thesis work, working drawings of mine cars, skips, and other parts of mine equipment that are usually designed and made at the mine.

MINE SURVEYING

The work in Surveying is given in the sophomore year and is designed solely for mining engineers.

The work begins with the elements of plane surveying with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabe or Vermilion Range. The exact location will be announced in March of each year.

The students will be divided into squads of two to four. Each squad must provide itself with a 6-foot steel tape graduated to hundredths. The duration of the course will be seven weeks $(5\frac{1}{2})$ days of 8 hours each constitute a week). Each student will be required to complete satisfactorily the following exercises and surveys:

- 1. Chaining and taping
- 2. Compass work
- 3. Adjustment and use of wye and dumpy levels
- 4. Adjustment of mining transit
- 5. Reading angles
- 6. Traverse with transit and steel tape
- 7. Azimuth traverse with stadia
- 8. Determination of meridian, latitude, and time by solar and stellar observations
- 9. Survey of mining claim according to the regulations of the U. S. Government
- 10. Measurement of earthwork

9

11. Laying out railroad tangents, curves, and crossings

12. Exercises in plane table work and geological surveying

13. The survey of a mine.

A full equipment of surveying instruments of the latest and best makes is furnished to each squad for this work.

This is followed by a course in Mine Mapping during the second semester of junior year.

Students who furnish satisfactory evidence of proficiency in this work may be given credit therefor. The department, however, reserves the right in any case to require such students to take a theoretical or a practical examination or both.

FIELD WORK IN MINING

Sophomore Year

After the close of the field work in Geology (last two weeks in June) members of the sophomore class are required to engage for six weeks in underground mining work on the Minnesota or Michigan iron ranges, for which they may receive wages.

Junior Year

Upon termination of the junior field work in Metallurgy (about May fifteenth), the members of the junior class, who are candidates for the degree of Engineer of Mines, are required to devote two weeks to the study of mine plant and mine operation under the direction of the department. This work will be given in one of the leading western metal mining districts, exact location to be announced in April of each year. Thereafter, during the months of June, July, and August, the student is required to spend at least eight weeks in actual underground mining work in the west, for which he may receive wages. The department will render all possible assistance in locating students in the camps of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must in person submit this diary to the department on date of reopening of field work. In judging the character of the student's field work, equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 10, 1912. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering Field Work in Mine Mapping, Mining, and Metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned.

The program covering this work is as follows: Metallurgy, September 10th-17th inclusive; Mining, September 18th-30th.

On September 30th all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn to

4

scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before September 30. These reports shall become the property of the School.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reason, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

ORE DRESSING

The lectures and recitations in Ore Dressing extend through the second semester of the junior year, and comprise the detailed study of ore dressing and concentrating machinery, together with the study of typical combinations of dressing machines as found in the several mining districts of the United States.

In connection with the theoretical work, the ore dressing and testing plant of the school is utilized for practical illustrations.

COURSES IN METALLURGY

COURSES LEADING TO THE DEGREE OF MET. E.

FIRST YEAR-FIVE-YEAR COURSES

First Semester

Chemistry 1, General, six hours

Mathematics 1, Algebra, four hours

Mathematics 3, Computation and Mensuration, three hours

Mechanical Engineering 3, Foundry Practice, six hours (twelve weeks)

Mechanical Engineering 2, Blacksmithing, six hours (six weeks)

Rhetoric 15, four hours

Spanish 11, Beginning, three hours

Second Semester

Chemistry 1, General, six hours

Mathematics 2, Solid Geometry and Mensuration, three hours

Mathematics 4, Mine Accounting, three hours

Mechanical Engineering 2, Blacksmithing, six hours (twelve weeks) .

Mechanical Engineering 1, Carpentry, six hours (six weeks)

Rhetoric 15, four hours

Spanish 11, Beginning, three hours

FRESHMAN YEAR-FOUR AND FIVE-YEAR COURSES

First Semester

Chemistry 2, General and Qualitative Analysis, five hours

Drawing 11, Engineering Drawing, ten hours

Mathematics 5, Algebra and Trigonometry, five hours

Mineralogy 1, General Mineralogy, eight hours

Second Semester

Chemistry 3, Qualitative Analysis, seven hours

Drawing 12, Engineering Drawing, eight hours

Mathematics 6, Trigonometry and Analytic Geometry, five hours

Metallurgy 1, Assaying, twelve hours

Mineralogy 2, Physical Mineralogy, four hours

SOPHOMORE YEAR-FOUR AND FIVE-YEAR COURSES

First Semester

Chemistry 4, Quantitative Analysis, eight hours

Drawing 13, Descriptive Geometry, two hours

Mathematics 7, Analytic Geometry and Calculus, five hours

Metallurgy 2, General and Iron, three hours

Mining 1, Mine Surveying, three hours

Physics 1, General, three hours

Physics 2, Laboratory Practice, two hours

Second Semester

Chemistry 5, Volumetric Analysis, eight hours Drawing 14, Drafting, four hours

Geology 3, Elements of Geology, three hours Mathematics 8, Calculus, five hours Metallurgy 3, Wrought Iron and Steel, three hours Mining 1, Mine Surveying, three hours Mining 2, one hour Physics 3, General, three hours Physics 4, Laboratory Practice, two hours Field Work. Months of May, June, July, and August Mining 3. Surveying, beginning about May 1st Geology 3a, beginning about June 15th Underground Mining Work, beginning about July 1st

IUNIOR YEAR-FOUR AND FIVE-YEAR COURSES

First Semester

Experimental Engineering 1, Strength of Materials, four hours Geology 4, Historical and Economic Geology, three hours Geology 9, Rock Study, four hours Mechanics 9, five hours Mechanics 11, Mine Plant, five hours Metallurgy 4, Base Metals, four hours Mining 4, five hours

Second Semester

Experimental Engineering 2, Steam Laboratory, four hours Geology 10. Petrology, four hours

Mechanics 10, five hours

Metallurgy 5, Precious Metals, four hours

Mining 5, five hours

Mining 6, three hours

Mining 7, Ore Dressing, five hours

Mining 8, Mine Mapping, six hours

Field Work. Months of May, June, July and August Metallurgy 10, beginning about May 1st Mining 9, beginning about May 15th Smelter Work, beginning about June 1st

SENIOR YEAR-FOUR AND FIVE-YEAR COURSES

First Semester

Chemistry 14, Special Problems, eight hours Electrical Engineering 4. Electric Power, five hours Mechanics 13, Water Power, five hours Mechanics 15, Engineering Construction, five hours Metallurgy 6, Ore Testing, ten hours Metallurgy 7, Special Problems, eight hours Metallurgy 8, Electro-Metallurgy, three hours Second Semester Chemistry 16, Electro-Chemical Analysis, six hours Chemistry 18, Iron and Steel Analysis, eight hours Experimental Engineering 5, Experimental Laboratory, four hours Mechanics 18, Mill and Smelter Design, six hours Metallurgy 9, Metallography, six hours Metallurgy 11, Thesis, ten hours

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use.

The practical work consists in visits to smelting and refining works which are accessible. The work in Metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags are shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students, who are required to make up the necessary charges and submit their reports in detail. This work is offered to students completing the necessary courses in Mineralogy and Chemistry.

The Assay Laboratories are located in the School of Mines Building and consist of:

1st. Preparation room. This room is 62 feet long by 36 feet wide and accommodates 66 students. Here samples and reagents are weighed preparatory to assaying. Each student is furnished with a complete set of apparatus, including a pulp balance for individual use. All operations are therefore conducted with the greatest economy of time and entirely apart from the furnace room. The separation of the preparation room from the furnace room is of greatest importance. Nearly all ores are crushed and pulverized by suitable machines run by electric motors. Students are compelled to pulverize by hand a minimum number of samples, thereby saving much time for extended and advanced work in special lines. 2d. Furnace room. This room is 60 feet long by 42 feet wide. The high ceiling and special ventilation provided for this room make it a most comfortable assay furnace room. It provides for the accommodation of twelve double-decked muffle furnaces, twenty-four crucible furnaces, and twelve gasoline furnaces. After the sample has been placed in a suitable vessel for fusion, it is taken to the furnace room, which communicates directly with the preparation room.

3d. Balance room. This room is 31 feet long by 16 feet wide. In this room are various types of balances for accurately weighing gold and silver beads and bullion. The room is specially lighted by electric cove lights from the ceiling. The balances are placed on heavy brick piers which are independent of the walls of the building.

ORE TESTING

The lectures treat of the use and purposes of all the machinery connected with the subject, supplemented by detailed drawings.

There are complete testing works connected with the department where the student may see the working of, and handle for himself, crushers, rolls, Huntington mill, concentrating machinery, such as vanners, buddles, jigs, pan for amalgamation, settlers, reverberatory furnaces for oxidizing and oxidizing-chloridizing roasts, leaching and chlorination plants, as well as sizing apparatus and hydraulic separators. Sufficiently large amounts of ore are given to make the necessary tests upon the different machines and the students report the best method of treatment. The first semester of the senior year is devoted to instruction and laboratory work, and is required of students both in Mining and Metallurgy.

The ore testing works meet educational as well as commercial needs. *Educational.*—The ore testing plant acquaints the student with the construction and manipulation of the principal typical machines used in the leading ore dressing establishments of the country. It is here that students in Mining and Metallurgical Engineering get the requisite practical experience. They handle all machines and operate on sufficiently large amounts of material to determine the methods best suited to a given ore to extract the largest amount of metal with the least possible loss.

Commercial.—Ore testing works are an important factor in mining and metallurgical projects. The commercial object is to determine the best method of treating a given ore so as to yield the largest percentage of the metal it contains at the least possible cost. Samples varying from 500 pounds to car load lots can be treated by various methods.

The ore testing works are located on the east bank of the Mississippi between the Great Northern and Northern Pacific railroads. Located at this point on the University campus, it offers the very best facilities for both educational and commercial purposes.

As the funds appropriated for the erection of such a plant were sufficient to purchase only the necessary machinery, the business men of Minneapolis generously provided a suitable building. This building, 94 by 66 feet, is built of brick and stone.

Machinery .- The plant contains all the machinery necessary to illustrate the various processes of ore testing, viz.: A Bridgman mechanical sampler, size B; a link belt bucket elevator; a pulley feeder complete: a pair of 121/2 by 12 geared rolls complete; a four compartment spitzkasten; a three compartment Hartz jig; a Collum jig complete with cone for driving; a three and a half foot Huntington mill complete; a three stamp mill, 275-pound stamps; a five stamp mill, 850-pound stamps; a Challenge automatic feeder for five-stamp battery; a suspended Challenge feeder for three-stamp battery; a Tulloch feeder for Huntington mill; a single deck buddle, twelve feet in diameter; a four-foot plain belt Frue vanner; a Cammett concentrator; a Hooper pneumatic concentrator; a Century drop motion jig; a three-foot amalgamating pan; a five-foot settler; a Bruckner roasting furnace, with fire box on wheels; a chlorination barrel; a battery tightener; a two-horsepower vertical boiler; a steam drving pan; three trommels, with driving arrangement and gears; a one thousand pound Reedy elevator, complete with worm gear; two overhead crawls, each with eighty-foot track; one-ton pulley block; a quarter-ton pulley block; a scoop car, with flat wheels; two twenty-horse power electric motors; three MacDermott automatic samplers, etc.

FIELD WORK IN METALLURGY

At the end of junior year opportunity is given the student to study metallurgical operations at one or more smelting works. This work will begin about May 1st. Not over two weeks' time will be devoted to this work.

Upon termination of the junior field work in Metallurgy and two weeks in Mining (not later than June 1st), the members of the junior class who are candidates for the degree of Metallurgical Engineer, are required to spend at least eight weeks in practical work in one or more of the smelters of the West, for which he may receive wages. The department will render all possible assistance in locating students in the camps of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must, in person, submit this diary to the department on date of reopening of field work. In judging the character of the student's field work equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 10, 1912. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering field work in Metallurgy and Mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: Metallurgy, September 10th-21st, inclusive; Mining, September 23d-30th.

On September 30th all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn to scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before September 30th. These reports shall become the property of the School.

DEPARTMENTAL STATEMENTS

CHEMISTRY

GEORGE B. FRANKFORTER, Ph.D., Professor	114 Chemistry Building
CHARLES F. SIDENER, B.S., Professor	203 Chemistry Building
FRANCIS C. FRARY, Ph.D., Assistant Professor	108 Chemistry Building
PAUL H. M-P. BRINTON, Instructor	205 Chemistry Building
LILLIAN COHEN, M.S., Instructor	106 Chemistry Building

1. General Chemistry

Miss Cohen

*Six credits (six hours per week); both semesters. Required of firstyear students, five-year courses.

Recitation and laboratory work. The course includes a study of the common elements and their compounds, with an introduction to the modern theories of chemistry.

2. General and Qualitative Analysis Messrs. FRANKFORTER and BRINTON Four credits (three lectures, two laboratory hours per week); first semester. Required of freshmen.

The course includes special general chemistry and the reactions of the metals as applied to their separation and identification.

3. Qualitative Analysis Messrs. FRANKFORTER and BRINTON Four credits (one lecture, six laboratory hours per week); second semester. Open to students completing Course 2. Required of freshmen.

The work in this course will include examination of alloys, minerals, slags, and other compounds.

4. Quantitative Analysis Mr. SIDENER and ASSISTANTS Five credits (two lectures, six laboratory hours per week); first semester. Open to students completing Course 3. Required of sophomores. The course includes an introduction to quantitative and a beginning of gravimetric

analysis.

5. Volumetric Analysis Mr. SIDENER and ASSISTANTS Five credits (two lectures, six laboratory hours per week); second semester. Open to students completing Course 4. Required of sophomores.

The course includes an introduction to volumetric determinations with a discussion of standard solutions and the necessary stoechiometric calculations.

 Special Problems Mr. SIDENER and ASSISTANTS Five credits (two lectures, six laboratory hours per week); first semester. Open to students completing Course 5. Required of seniors in E. M. and Met. E. Courses.

The course includes the working out of various mineralogical, technological, and metallurgical problems, with work on ores of base metals, limestones, slags, etc.

*A credit is one recitation or lecture hour per week, per semester. Two laboratory hours are equal to one credit.

16. Electro-Chemical Analysis Mr. FRARY Four credits (two lectures, four laboratory hours per week); second semester. Open to students completing Course 14. Required of seniors in Met. E. Courses.

The course includes the qualitative and quantitative separation of metals by electrolysis.

18. Iron and Steel Analysis Mr. SIDENER and ASSISTANTS Five credits (two lectures, six laboratory hours per week); second semester. Open to students completing Course 14. Required of seniors in E. M. and Met. E. Courses.

The course includes the rapid determination of iron by the various methods, as well as the determination of associated elements, sulphur, phosphorus, silicon, manganese, carbon, and others.

DRAWING AND DESCRIPTIVE GEOMETRY

WILLIAM H. KIRCHNER, B.S., Professor

209 Main Engineering Building FRANK B. ROWLEY, B.S., M.E., Instructor

ROBERT W. FRENCH, B.S., Instructor

209 Main Engineering Building

209 Main Engineering Building

——, Instructor

Messrs. KIRCHNER and FRENCH 11. Engineering Drawing Five credits (ten drafting hours per week); first semester. Required of freshmen in E. M. and Met. E. Courses, and of first-year students in E. M. (Geol.) Course.

Sketching, lettering, representation, parallel and radial projection, elements of engineering drawing, representation of details of machines and structures, interpretation of working drawings.

12. Engineering Drawing

Four credits (eight drafting hours per week); second semester. Open to students completing Course 11. Required of freshmen in E. M. and Met. E. Courses, and of first-year students in E. M. (Geol.) Course.

Continuation of Course 11 as outlined above. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. Maps and sketches. Brush and pen conventions.

13. Descriptive Geometry

Two credits (two lectures per week); first semester. Open to students completing Course 12 and Mathematics 6. Required of sophomores.

Projection-central and special cases, principles and applications, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems.

Mr. FRENCH

Mr. KIRCHNER

14. Drafting Messrs. ROWLEY and FRENCH Two credits (four drafting hours per week); second semester. Open to students completing Course 13. Required of sophomores.

Graphics, machine drafting, and structural drafting. Instruction in drafting room methods.

ELECTRICAL ENGINEERING

GEORGE D. SHEPARDSON, M.A., M.E., Professor

30 Electrical Engineering Building WILLIAM T. RYAN, E.E., Assistant Professor

14 Electrical Engineering Building

4. Electric Power

Mr. RYAN

Three credits (one lecture, four laboratory hours per week); first semester. Open to students completing Physics 3 and 4. Required of seniors in E. M. and Met. E. Courses.

Elements of theory and practice of electrical measurements, wiring, dynamos, motors, and electric lighting.

EXPERIMENTAL ENGINEERING

WILLIAM H. KAVANAUGH, M.E., Professor, 107 Experimental Engineering Building

CHARLES F. SHOOP, B.S., Assistant Professor, 107 Experimental Engineering Building

 Strength of Materials Two credits (four laboratory hours per week); first semester. Open to students taking Mechanics 9. Required of juniors in E. M. and Met. E. Courses.

Laboratory work, investigating the strength and physical qualities of iron, steel, brass, copper, belting, chains, beams, brick, and stone.

2. Steam Laboratory

Two credits (four laboratory hours per week); second semester. Open to students completing Course 1. Required of juniors in E. M. and Met. E. Courses.

Exercises in valve setting, indicator practice, calibration of steam gauges, efficiency of screws and hoists.

5. Experimental Laboratory

Two credits (four laboratory hours per week); second semester. Open to students completing Course 2. Required of seniors in E. M. and Met. E. Courses.

Hydraulic measurements. Calibration of weirs, nozzles, meters, and other hydraulic apparatus, calorimetry; tests of pumps, engines, and boilers.

Mr. Shoop

Mr. KAVANAUGH

FRENCH AND SPANISH

CHARLES W. BENTON,	M.A.,	Litt.D.,	Professor	of	Romance Languages
					200 Folwell Hall
CHARLES M. ANDRIST,	M.L.,	Professor			228 Folwell Hall
JULES T. FRELIN, B.A.,	Assista	ant Profes	ssor		228 Folwell Hall

FRENCH

1. Beginning Messrs. ANDRIST and FRELIN Six credits (three hours per week); both semesters. Open to firstyear students in E. M. (Geol.) Course.

French Grammar and Reader; modern texts.

2. Intermediate

Six credits (three hours per week); both semesters. Open to students completing Course 1.

Modern texts will be read, including some of the works of Coppee, Merimee, Daudet, Scribe, etc.

3. Advanced Grammar and Composition Mr. ANDRIST Six credits (three hours per week); both semesters. Open to students in E. M. (Geol.) Course who enter with two years of French.

Readings from modern authors, including selections from Coppee, Feuillet, and Sandeau.

5. The Classical Period of French Literature Mr. BENTON Six credits (three hours per week); both semesters. Open to students completing Course 2 or 3.

The reading of works and selections produced during the classical period of French literature, and conversations in French concerning the same. The works of Corneille, Racine, Moliere, La Fontaine, etc. Compositions.

SPANISH

11. Beginning

Six credits (three hours per week); both semesters. Required of first-year students in E. M. and Met. E. Courses.

Monsanto and Languellier, Spanish Course-Josselyn; Worman, First Spanish Book; Bransby, Spanish Reader.

GERMAN

JOHN G. MOORE, B.A., Professor of German	210 Folwell Hall
HANS JUERGENSEN, M.A., Assistant Professor	215 Folwell Hall
OSCAR C. BURKHARD, M.A., Assistant Professor	214 Folwell Hall
RICHARD WISCHKAEMPER, M.A., Instructor	216 Folwell Hall

1. Beginning Messrs. JUERGENSEN, BURKHARD, and WISCHKAEMPER Six credits (three hours per week); both semesters. Open to firstyear students in E. M. (Geol.) Course.

Pronunciation, grammar, conversation and composition; selected reading in easy prose and verse.

37

Mr. ANORIST

Mr. FRELIN

3. Scientific Intermediate Messrs. JUERGENSEN, BURKHARD, and WISCH-KAEMPER

Six credits (three hours per week); both semesters. Open to students completing Course 1.

This course is arranged to meet the peculiar needs of students of the School of Mines. Text: Merckel's Bilder aus der Ingenieurtechnik.

4. Prose and Poetry Messrs. MOORE, JUERGENSEN, BURKHARD, and WISCHKAEMPER

Six credits (three hours per week); both semesters. Open to firstyear students in E. M. (Geol.) Course who enter with two years of German.

Stern's Aus deutschen Meisterwerken; Goethe's Gedichte; Heine's Buch der Lieder. Geography, history, and legend. Review of German grammar throughout the year. This course may be supplemented.

 Advanced Scientific Reading Messrs. JUERGENSEN and BURKHARD Six credits (three hours per week); both semesters. Open to students who have taken Course 3 or 4.

Reading of scientific monographs and periodicals.

MECHANICAL ENGINEERING

JOHN J. FLATHER, Ph.B., M.E., Professor

12 Mechanical Engineering Building S. CARL SHIPLEY, B.S., M.E., Assistant Professor

Mechanical Engineering Building
 Mechanical Engineering Building

Mechanical Engineering Building

Mechanical Engineering Building

WILLIAM H. RICHARDS, Instructor

Edward Quigley, Instructor Peter Peterson, Instructor

1. Carpentry

Mr. RICHARDS

Four credits (six hours per week, six weeks); second semester. Required of first-year students, five-year E. M. and Met. E. Courses.

Wood working, use of tools; lathe and bench work. Patterns for moulding, core boxes, flasks. Lectures and practice.

2. Blacksmithing Messrs. SHIPLEY and QUIGLEY Two credits (six hours per week, eighteen weeks); first semester. Required of first-year students, five-year E. M. and Met. E. Courses. Use of tools, forging, welding, tool dressing, tempering. Lectures and practice.

3. Foundry Practice

Three credits (six hours per week, twelve weeks); first semester. Required of first-year students, five-year E. M. and Met. E. Courses.

Moulding, casting, mixing metals, brass work, and core making. Shop practice, recitations, and lectures.

Mr. PETERSON

.

MECHANICS AND MATHEMATICS

ELTING H. COMSTOCK, M.S., Professor 22 School of Mines Building EDWIN M. LAMBERT, M.E., Assistant Professor

JULIUS H. SANTO, E.M., Instructor

1. Algebra

Four credits (four recitations per week); first semester. Required of first-year students, five-year courses.

Review of Elementary Algebra, equations with one, two, or more unknown quantities, inequalities, involution and evolution, theory of exponents, surds, quadratic equations, both numerical and literal, equations with one or more unknown quantities that can be solved by means of quadratic equations, progressions.

2.	Solid	Geometry	and	Mensuration	Mr.	SA

Three credits (three recitations per week); second semester. Required of first-year students, five-year courses.

Demonstrations of most important theorems, volumes, approximate volumes, prismoidal formula, etc.

3. Computation and Mensuration Mr. Comstock Three credits (three recitations per week); first semester. Required of first-year students, five-year E. M. and Met. E. Courses.

Approximate computation, graphs and graphical computation, logarithms and logarithmic computation, areas and approximations of areas.

4. Elementary Mine Accounting

Three credits (three lectures per week); second semester. Required of first-year students, five-year E. M. and Met. E. Courses.

Elementary accounting in general, applications to mine accounts; primary records, labor, supply, mine and mill products, and fund sheets; secondary records, invoice, labor and supply, mine and mill cost sheets, trial balance, etc.

5. Algebra and Trigonometry

Five credits (five recitations per week); first semester. Required of freshmen.

Functions and functional notation, factors and roots of general quadratics, factor and remainder theorems, factors and values of functions, determinants, development of functions and undetermined coefficients, derived functions, theory of equations, permutations and combinations; trigonometric ratios, right triangles, general definitions of trigonometric functions, analytic relations, addition formulas, etc.

6. Trigonometry and Analytic Geometry Mr. SANTO Five credits (five recitations per week); second semester. Open to students completing Course 5. Required of freshmen.

Trigonometric equations, oblique triangles, spherical formulas and solution of spherical triangles; systems of co-ordinates, loci, straight line, transformations, equations of conics, properties of conics.

7. Analytic Geometry and Calculus · Mr. LAMBERT Five credits (five recitations per week); first semester. Open to students completing Course 6. Required of sophomores.

30

Mr. SANTO

22 School of Mines Building

22 School of Mines Building

NTO

Mr. LAMBERT

Mr. SANTO

General equation of second degree, higher plane curves, co-ordinates in space, point, plane, straight line, quadric surfaces; nature of differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, elementary integration, expansion of functions, indeterminate forms, partial derivatives, change of variable.

8. Calculus

Five credits (five recitations per week); second semester. Open to students completing Course 7. Required of sophomores.

Applications continued, rational fractions, rationalization, formulas of reduction, multiple integration, various systems of co-ordinates, approximate integration, hyperbolic functions, some differential equations of mechanics; adjustments of observations.

9. Mechanics

Five credits (five recitations per week); first semester. Open to students completing Course 8, and Physics 3. Required of juniors.

Statics and dynamics, rectilinear, circular, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy; elementary mechanics of materials.

10. Mechanics

Five credits (five recitations per week); second semester. Open to students completing Course 9. Required of juniors.

Mechanical and elastic properties of materials of construction; beams, shafts, columns, reinforced concrete, hollow cylinders and spheres, rollers, plates; theory of internal stress.

11. Mine Plant

Five credits (five lectures per week); first semester. Open to students taking Course 9. Required of juniors in E. M. and Met. E. Courses.

Discussion of the machinery and appurtenances employed in the equipment of mines. Hoisting, pumping, air compression, headframes, ore bins, etc.

13. Hydraulics and Water Power

Five credits (five recitations and lectures per week); first semester. Open to students completing Course 10. Required of seniors.

Laws of the equilibrium, pressure and flow of liquids, estimation of power to be developed at a power site, dams and appendages, theory of water wheels and turbines, number and type of units to install, speed control, power house equipment, transmission.

15. Engineering Construction Messrs. Comstock and LAMBERT

Three credits (one lecture, four drafting hours per week); first semester. Open to students completing Course 10. Required of seniors in E. M. and Met. E. Courses.

Analytic and graphic resolution of stresses in framed structures, loads, stresses in mining structures, design of mining structures.

16. Mine Plant Design

Three credits (six drafting hours per week); second semester. Open to students completing Course 15. Required of seniors in E. M. Course.

A study of power possibilities, costs, etc., and design of a power plant, surface equipment, and structures in connection with thesis work.

18. Mill and Smelter Design

Three credits (six drafting hours per week); second semester. Open to students completing Course 15. Required of seniors in Met. E. Courses.

A study of the construction and mechanical equipment of mills and smelters in connection with thesis work.

Mr. LAMBERT

Mr. LAMBERT

Mr. LAMBERT

Mr. COMSTOCK

Mr. Сомятоск

Mr. Comstock

Mr. COMSTOCK

METALLURGY

WILLIAM R. APPLEBY, M.A., Professor	27	School of	Mines	Building
PETER CHRISTIANSON, B.S., E.M., Professor				
	25	School of	Mines	Building
LEVI B. PEASE, M.S., Professor	26	School of	Mines	Building
EDMUND NEWTON, E.M., Instructor	25	School of	Mines	Building

1. Assaying

Mr. APPLEBY and ASSISTANTS

Eight credits (four lectures and eight laboratory hours per week); second semester. Open to students completing Mineralogy 1. Required of freshmen in E. M. and Met. E. Courses.

Determination of values of ores, metallurgical products and bullion.

2. General Metallurgy and Metallurgy of Iron Mr. CHRISTIANSON Three credits (three lectures per week); first semester. Open to students completing Course 1. Required of sophomores in E. M. and Met. E. Courses.

Including the subjects of combustion, fuels, refractory materials, and furnaces. Lectures and recitations on metallurgy of iron.

 Metallurgy of Wrought Iron and Steel Mr. CHRISTIANSON Three credits (three lectures per week); second semester. Open to students completing Course 2. Required of sophomores in E. M. and Met.
 E. Courses.

Consideration of the principles of manufacture, details of plant construction, and chemical and physical phenomena.

4. Metallurgy of the Base Metals Mr. PEASE Four credits (four lectures per week); first semester. Open to students completing Course 3. Required of juniors in E. M. and Met. E. Courses.

Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining methods.

5. Metallurgy of the Precious Metals Mr. PEASE Four credits (four lectures per week); second semester. Open to students completing Course 4. Required of juniors in E. M. and Met. E. Courses.

Gold, silver, and platinum. Methods and principles of cyanidation, chlorination, amalgamation, and lixiviation asapplied to the treatment of the above.

6. Ore Testing Mr. APPLEBY and ASSISTANTS Six credits (two lectures and eight laboratory hours per week); first semester. Open to students completing Course 5 and Mining 7. Required of seniors in E. M. and Met. E. Courses.

Determination of methods of ore treatment. stamping, concentration, cyanidation, roasting, chlorination, lixiviation, and amalngamatio.

- 7. Special Problems in Metallurgy Mr. APPLEBY and ASSISTANTS Four credits (eight laboratory hours per week); first semester. Open
- to students taking Course 6. Required of seniors in Met. E. Course. Research work preparatory to thesis.

8. Electro-Metallurgy

Three credits (three lectures per week); first semester. Open to students completing Course 5. Required of seniors in Met. E. Courses.

A study of the reduction of ores, refining of metals and production of metals by electrolytic deposition; and the use of the electric furnace for smelting of ores, refining metals, and the manufacture of refractory alloys.

9. Metallography

Mr. NEWTON

Mr. CHRISTIANSON

Four credits (two lectures, four laboratory hours per week); second semester. Open to students completing Course 3. Required of seniors in Met. E. Courses.

A study of the microstructure of metals and alloys as affected by heat and industrial treatments, together with the influence of changes of structure on their properties. Special attention is given to siderurgic products.

10. Field Work in Metallurgy Mr. APPLEBY and ASSISTANTS Two credits (eight hours per day in field for seven days); June following second semester. Open to students completing Course 5. Required of juniors.

Study of metallurgical operations at smelters and mills. Detailed report is required covering plants visited.

 Thesis and Specifications Messrs. APPLEBY and COMSTOCK Five credits (ten hours, conference and laboratory); second semester.
 Open to students completing Course 9. Required of seniors in Met. E. Courses.

Detailed investigations of ore treatment, with report including designs and specifications for suitable plants.

MINING ENGINEERING

CHARLES E. VAN BARNEVELD, B.A., Sc., E.M., Professor

28 School of Mines Building EDWARD P. MCCARTY, E.M., Professor MERTON S. KINGSTON, E.M., Assistant Professor

28 School of Mines Building ERVIN W. McCullough, E.M., Instructor

28 School of Mines Building

1. Mine Surveying Messrs. McCARTY and KINGSTON Six credits (three lectures per week); both semesters. Open to students completing Mathematics 6. Required of sophomores.

Computation, platting, and problems with special reference to mine surveying.

42

2. Mining

One credit (one lecture per week); second semester. Required of sophomores.

Explosives and blasting.

3. Field Work

Mr. VAN BARNEVELD and ASSISTANTS

Eight credits (eight hours a day for seven weeks); second semester. Open to students completing Mining 1. Required of sophomores.

Practice in general surveying during month of May. Practice in underground sur veying during first two weeks of June. This work is given on the Iron Ranges.

4. Mining

Five credits (five lectures per week); first semester. Open to students completing Course 2. Required of juniors.

Mode of occurrence of ore bodies; prospecting, drilling and blasting. Use of churn and diamond drill.

5. Mining

Five credits (five lectures per week); second semester. Open to students completing Course 4. Required of juniors. Shaft-sinking, tunneling, drifting, stoping, timbering.

6. Mining

Mr. VAN BARNEVELD Three credits (three lectures per week); second semester. Open to students comp ag Course 4. Required of juniors.

Methods of metal mining. Methods of coal mining. Hydraulic mining. Quarrying.

7. Ore Dressing

Five credits (five lectures per week); second semester. Open to students completing sophomore work. Required of juniors.

Mechanical preparation of ore for the markets, for metallurgical treatment, etc.

8. Mine Mapping

Mr. KINGSTON

Three credits (six drafting hours per week); second semester. Open to students completing Course 3. Required of juniors.

Mine mapping in accordance with prevalent practice in the western mining districts. Ore and stripping estimates and mine maps based on Mesabe Range practice.

9. Practical Mining Mr. VAN BARNEVELD and ASSISTANTS Eight credits (eight hours per day for ten weeks); summer vacation. Open to students completing Course 6. Required of juniors.

Study of mining operations. Mine plant and equipment and practical mining work a mine to be selected by department during months of May, June, July, and August.

10. Mining and Mining Engineering Mr. van Barneveld

Five credits (five lectures per week); first semester. Open to students completing Mining 9. Required of seniors in E. M. Courses.

Mining machinery, underground transportation, hoisting, pumping, and ventilation. Electricity applied to mining.

43

Mr. VAN BARNEVELD

Mr. VAN BARNEVELD

Mr. VAN BARNEVELD

Mr. MCCARTY

11. Mining and Mining Engineering Mr. VAN BARNEVELD Five credits (five lectures per week); second semester. Open to students completing Mining 10. Required of seniors in E. M. Courses.

Mine management, mine accounts, mining law, mining accidents, examination of a mining property, sampling ore reserves.

12. Designs and Specifications Messrs. VAN BARNEVELD and COMSTOCK Four credits (eight drafting hours per week); second semester. Open

only to seniors in regular standing. Required of seniors in E. M. Courses. Designs of mine cars, skips, head-frames, etc., in connection with thesis work.

13. Thesis Messrs. VAN BARNEVELD, MCCARTY, and MCCULLOUGH Two and four credits (two and four-hour conferences): both semesters.

Open only to seniors in regular standing. Required of seniors in E. M. Courses.

Conference with individual students. This work is based upon a review of the preceding technical work and field work.

MINERALOGY AND GEOLOGY

WILLIAM H. EMMONS, Ph.D., Professor	108 Pillsbury Hall
FRANK F. GROUT, M.S., Assistant Professor	102 Pillsbury Hall
FREDERICK W. SARDESON, Ph.D., Assistant Professor	
	103 Pillsbury Hall
OLIVER BOWLES, M.A., Instructor	102 Pillsbury Hall
EDGAR K. SOPER, B.A., Instructor	112 Pillsbury Hall

1. General Mineralogy Messrs. GROUT and BOWLES Six credits (four lectures, four laboratory hours per week); first semester. Required of freshmen.

The development of the systems of crystallization; the morphological, physical, and chemical characters of minerals; classification and description of common minerals; laboratory work, involving the application of chemical and blowpipe tests to the identification of species, with demonstrations; determination of minerals by physical properties, and sight identification The occurrence, genesis, and use of minerals.

2. Physical Mineralogy

Three credits (two lectures, two laboratory hours per week); second semester. Open to students completing Course 1. Required of freshmen.

A continuation of Course 1, special attention being given to economic and rock-forming minerals. Laboratory work, mineral determination and sight identification; introduction to the use of the gonometer and microscope. Reference reading and field excursions.

3. Elements of Geology

Three credits (three lectures per week); second semester. Required of sophomores.

The course is a synoptical treatment of the materials of the earth and of geologic processes; physiographic, structural, and dynamic geology, with a brief introduction to historical geology. Geologic structure is emphasized and the lectures are reinforced by the study of geologic maps.

Mr. Soper

Messrs. GROUT and BOWLES

3a. Field Work

Mr. SOPER

One credit (first two weeks in June). Required of sophomores.

A two-week excursion to the Iron Ranges for practice in field methods, such as tracing contacts, working out structures, and constructing and interpreting geologic maps.

4. Historical and Economic Geology Messrs. EMMONS and SOPER Three credits (three lectures a week): first semester. Required of juniors.

(a) Historical Geology. The geologic history of North America, with special reference to its syngenetic mineral deposits.

(b) Economic Geology. A study of the occurrence, genesis, distribution, and uses of the non-metallic minerals of economic value, including a discussion of the geologic guides to prospecting for these deposits.

9. Elements of Rock Study Messrs. GROUT and BOWLES Two credits (four laboratory hours per week); first semester. Open to students completing Course 3. Required of juniors.

The composition of the earth's crust, a general treatment of the origin, occurrence, and genesis of igneous, sedimentary and metamorphic rocks; their mineral and chemical composition; their structure, texture and physical constitution; the alteration of rocks; the classification of igneous rocks; an introduction to the use of the microscope.

10. Petrology

Messrs. GROUT and BOWLES

FEB 26 1931

Hill courty a martials.

Two credits (four laboratory hours per week); second semester. Open to students completing Course 9. Required of juniors.

Laboratory work, lectures, and reference reading. The identification of minerals and rocks by optical study; a study of igneous rocks, followed by that of crystalline schists and metamorphic rocks; the origin and classification of rocks.

12. Ore Deposits

Messrs. EMMONS and SOPER Four credits (four lectures per week); first semester. Open to students completing Course 10. Required of seniors.

A discussion of ore deposition; the nature, distribution, and genesis of metalliferous ore deposits of the United States. A study of the relation of ore deposits to geologic structure and of the changes which ore deposits undergo through oxidation and related processes. The course includes laboratory work illustrating the use of mine maps and geologic cross sections through mines, and detailed laboratory studies of reports on mining districts.

13. Special Problems in Ore Deposits Messrs. EMMONS and SOPER Two credits (four laboratory hours per week); second semester. Open to students completing Course 12. Required of seniors in E. M. and E. M. (Geol.) Courses.

Lectures on field and laboratory methods. A study of metallogenic epochs and metallographic provinces, particularly those of the United States.

13a. Seminar in Ore Deposits

Mr. Emmons Three credits (three hours per week); second semester. Open to students completing Course 12. Required of seniors in E. M. (Geol.) Course. Selected problems. Development of methods of research CURRARY OF THE

PHYSICS

JOHN ZELENY, Ph.D., Professor JAMES COXE SANDERSON, Ph.D., Instructor

1. General Physics Messrs. JOHN ZELENY and SANDERSON Three credits (three hours per week); first semester. Open to students completing Mathematics 6. Required of sophomores.

Mechanics of solids and fluids, heat and sound. This is the first part of an elementary course in Physics, designed for those who do not intend to pursue the subject longer than one year. The course is experimental rather than mathematical and gives the student a general knowledge of the fundamental principles of the subject. There will be one experimental lecture and two recitations each week.

2. General Laboratory Practice One credit (two hours per week); first semester. Open to students taking Course 1. Required of sophomores.

Physical measurements in the mechanics of solids and fluids, and in heat and sound, giving the student a knowledge of experimental methods.

3. General Physics Messrs. JOHN ZELENY and SANDERSON Three credits (three hours per week); second semester. Open to students completing Course 1. Required of sophomores.

Light, electricity and magnetism. This is the second part of the elementary course begun under Course 1. The treatment is experimental and the fundamental principles of the subjects, including those of radioactivity, ionization, X radiation, and the electrical constitution of matter, are discussed and illustrated. There will be one experimental lecture and two recitations each week.

4. General Laboratory Practice Mr. SANDERSON One credit (two hours per week); second semester. Open to students taking Course 3. Required of sophomores.

Physical measurements in light, electricity, and magnetism, giving the student a knowledge of experimental methods.

RHETORIC

JOSEPH M. THOMAS, Ph.D., Professor WARREN T. POWELL, M.A., Instructor

310 Folwell Hall 410 Folwell Hall

Mr. Powell

15. Rhetoric and Composition

Eight credits (four hours per week); both semesters. Required of all freshmen.

This course is planned with special reference to the needs of engineering students. Practical training in writing will be given, and in connection with the written work the student will be required to study the work of those writers who have handled scientific subjects with clearness and power.

To broaden the scope of the student's knowledge and interests a course of outside reading will also be required.

15 Physics Building

32 Physics Building

Mr. SANDERSON

STUDENTS

SENIORS-24

Bjorge, Guy N., Duluth Coventry, Edward D., Duluth Dickson, Robert H., Minneapolis Hagstrom, Leonard J., Minneapolis Harrington, Geo. L., Minneapolis Hewitt, Ezra A., Minneapolis Kennedy, Charles T., Minneapolis Knox, Lafayette F., St. Paul Kremer, Edward G., Grand Rapids Lea, John, Zumbrota Lewis, John W., Minneapolis McAdams, Howard R., Minneapolis Martin, Lynn U., Grand Meadow O'Brien, J. Chas., St. Paul Olson, Walter S., St. Paul Perry, Joe B., Minneapolis Prouty, Roswell W., St. Paul Quinn, Max F., Minneapolis Stevens, Howard E., Stillwater Taylor, W. L., Dundas Victor, Albin F., Lindstrom Wallinder, Arthur, Duluth Walter, Rollie B., Delano Woodis, Clark N., Amboy

JUNIORS-17

Coady, Leo J., Minneapolis Cohen, Julius M., St. Paul Ely, Robert H., Duluth Hammond, Arthur H., Minneapolis Hanson, J. Bernard, Minneapolis Harvey, Harry J., Duluth Hondrum, Olaf, Bemidji Ladd, Greeley, Minneapolis

Larson, John Ed., Minneapolis McCormack, Clyde P., Minneapolis Michie, Roy G., Montevideo Nissen, Arvid E., Minneapolis olis Ofsthun, Norman H., Glenwood Quinlan, Howard, St. Paul Walker, Charles A., Brainerd Wasson, Harold J., Minneapolis Williams, James H., Virginia

SOPHOMORES-14

Amidon, Richard G., Minneapolis Bierman, Alfred, Litchfield Eidemiller, Howard N., St. Paul Haugan, Albert C., Hanska Johnson, Roy R., St. Louis Park Larson, Ernest L., Akeley Nordale, Carl E., Minneapolis Potter, Orrin W., St. Paul Ravicz, Louis, Minneapolis Richard, Charles L., Stillwater Schultze, Max F., Walker Van Cleve, R. H., Minneapolis Vorck, Charles R., St. Paul Williams, Paul S., Lake Benton

FRESHMEN-22

Buresh, Charles E., Lakefield Butler, William V., Little Falls Chatfield, William E., Minneapolis Christenson, Alfred, Madelia Clark, Malcolm W., Northfield Coller, Walter A., St. Paul Collins, Leon T., Pine Island Dopp, Lawrence, Ashland, Wis. Glass, Archie, Duluth Harmon, Sidney E., St. Paul Heili₃, Louis S., Minneapolis Johnson, Fred C., Willmar Kerr, Charles D., Minneapolis Lee, Martinus, Minneapolis Lee, Oscar, St. Paul Montgomery, Daniel, Worthington Neerland, Herman, Minneapolis Nord, Harry H., St. Paul Sanchez, Richard M., Tarma, Peru Stene, James, Minneapolis Urquhart, George K., St. Paul Wade, Henry H., Hopkins FIRST YEAR CLASS-21

Aronson, Sam, St. Paul Barskey, Philip M., Minneapolis Capser, Leo W., St. Paul Carroll, Lawrence, Sparta, Wis. Dovre, Adolph, Sleepy Eye Ellıs, George J., Minneapolis Evleth, Everett B., St. Paul Josephson, Samuel, Minneapolis Krogh, Alvin T., Minneapolis Levy, Martinio, Sao Paulo, Brazil William McDermid, Archie J., Duluth McHardy, Roy H., Minneapolis Marr, Ralph C., Minneapolis Marr, William N., Minneapolis Murphy, Vernon R., Centuria, Wis. Neumeier, Frederick G., Stillwater Oglesby, Fred B., Valley City, N. D. Ostrom, George E., Stillwater Sweetman, Edwin, Aitkın Tollefson, Russell, Minneapolis

Williams, Maurice W., Minneapolis

66uZmi 1913/14 The University of Minnesota

THE SCHOOL OF MINES

1913-1914

ANE FLOWER OF AL

ESD 25 1331

pears , and V of tell's S.

BULLETIN OF THE UNIVERSITY OF MINNESOTA VOL. XVI, NO. 14. JUNE 1913

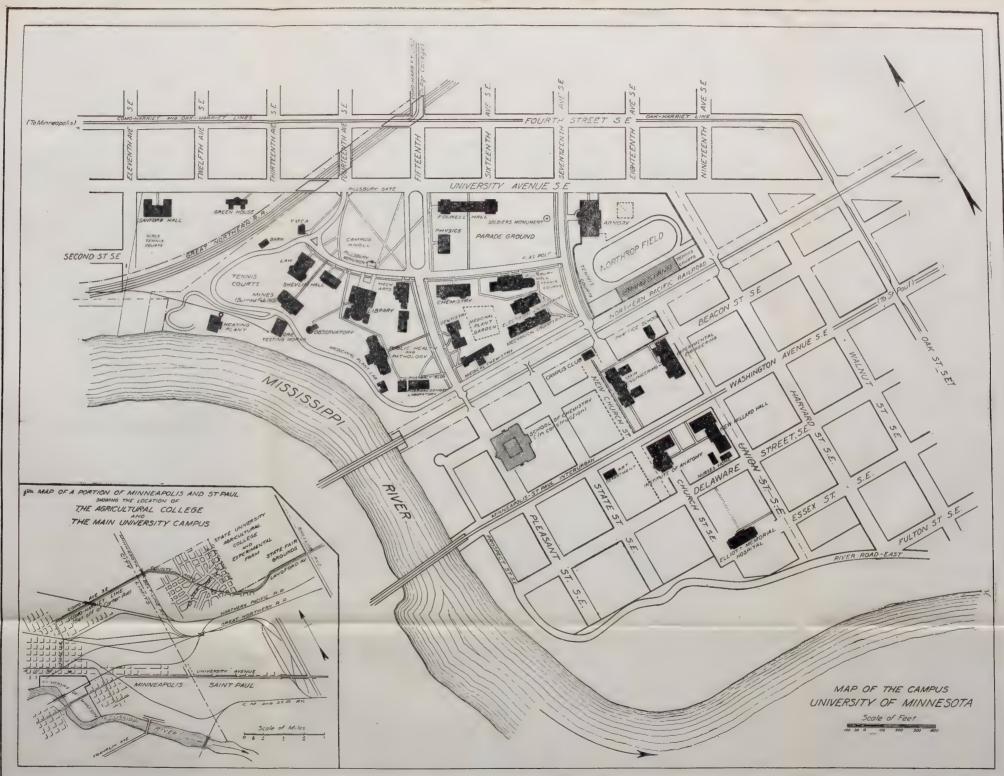
> Entered at the Post Office in Minneapolis as second-class matter MINNEAPOLIS, MINN.

The Bulletin of the University of Minnesota is issued by the University of Minnesota as often as twice a month during the university year.

The Bulletin comprises-

Original Series. The President's Report, the Bulletin of General Information, the annual announcements of the schools, colleges, and departments of the University of Minnesota, and other formal publications of the University.

Extra Series. Announcements of departments of instruction, reports of University officers, etc.


Bulletins will be sent gratuitously, postage paid, to all persons who apply for them. In calling for bulletins, the applicant should state whether the Bulletin of General Information is desired or bulletins of certain colleges or schools of the University. Address

The REGISTRAR,

The University of Minnesota,

Minneapolis, Minnesota.

OS. ciner Mar 1913

The University of Minnesota

THE SCHOOL OF MINES

1913-1914

THE LIBRARY OF THE FEB 2.6 1931

BULLETIN OF THE UNIVERSITY OF MINNESOTA VOL. XVI, NO. 14 JUNE 1913

Entered at the Post Office in Minneapolis as second-class matter MINNEAPOLIS, MINN.

1913	19:	14
JULY	JANUARY	JULY
SU MO TU W TH FR SA	Su Mo Tu W TH FR SA	SU MOTU W TH FR SA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
••• ••• ••• ••• ••• •••	<u></u>	<u>·· [··]··]··]··]··]··]··</u>
AUGUST	FEBRUARY	AUGUST
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SEPTEMBER	MARCH	SEPTEMBER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
OCTOBER	APRIL	OCTOBER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NOVEMBER	MAY	NOVEMBER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
DECEMBER	JUNE	DECEMBER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

UNIVERSITY CALENDAR

1913-1914

The University year covers a period of thirty-eight weeks, beginning on the second Tuesday in September. Commencement Day is always the second Thursday in June.

1913			
September	2	Tuesday	Registration closes except for new students
September	2-9	Week	Fees payable except for new students
September	8-15	Week	Supplementary entrance examina- tions, registration of new students, and payment of fees
September	10-16	Week	Military encampment of cadets
September	17	Wednesday	First semester begins
November	26	Wednesday	Thanksgiving recess begins 9:00 p.m.
December	1	Monday	Thanksgiving recess ends 8:00 a.m.
December 1914	19	Friday	Christmas vacation begins 9:00 p.m.
January	6	Tuesday	Christmas vacation ends 8:00 a.m.
January	20	Tuesday	Registration for second semester closes
January	26	Monday	Final examinations begin
January	27	Tuesday	Payment of fees for second semester closes
February	4	Wednesday	Second semester begins
February	12	Thursday	Lincoln's Birthday: a holiday
February	13	Friday	First semester class reports due
April	8	Wednesday	Easter recess begins 9:00 p.m.
April	16	Thursday	Easter recess ends 8:00 a.m.
May	30	Saturday	Decoration Day: a holiday
June	1	Monday	Final examinations begin
June	6	Saturday	Second semester closes
June	7	Sunday	Baccalaureate service
June	8	Monday	Senior class day exercises
June	10	Wednesday	Alumni Day
June	11	Thursday	Forty-second Annual Commence- ment
June	12	Friday	Summer vacation begins

The University year for 1914-15 will begin Tuesday, September 8.

Program of Entrance Examinations, 1913-14

When entrance examinations are required this schedule will be followed:

Monday,	Sept. 8	9 a.m. 2 p.m.	Business Subjects Manual Subjects, Domestic Art and Science, Agriculture
Tuesday,	Sept. 9	9 a.m.	Astronomy, Botany, Geology, Chem- istry, Physiography, Zoology, Phys- ics, Physiology
		2 p.m.	American Government, History, Eco- nomics, Commercial Geography, His- tory of Commerce, Economic History of England, Economic History of the United States
Wednesday,	Sept. 10	9 a.m.	English
5,		2 p.m.	German, Greek, French, Latin, Scan- dinavian, Spanish
Thursday,	Sept. 11	9 a.m.	Elementary Algebra
		2 p.m.	Higher Algebra
Friday,	Sept. 12	9 a.m.	Plane Geometry
		2 p.m.	Solid Geometry
Thursday, Ju	ine 4, 1914	9 a.m.	Elementary Algebra
		2 p.m.	Higher Algebra
Friday, Ju	ine 5, 1914	9 a.m.	Plane Geometry
		2 p.m.	Solid Geometry

All candidates for examinations should report at the scheduled time in Room 112, Library Building.

Program of Supplementary Examinations

Tuesday,	Sept.	9 9-12 a.m.	Mechanics and Mathematics
		2-5 p.m.	Mining Engineering Subjects
Wednesday,	Sept. 1	0 9-12 a.m.	Chemistry
		2-5 p.m.	Drawing and Descriptive Geometry
		2-5 p.m.	Mechanical Engineering Subjects
Thursday,	Sept. 1	1 9-12 a.m.	Metallurgical Subjects
		2-5 p.m.	Physics
Friday,	Sept. 1	2 9-12 a.m.	Electrical Engineering Subjects
		2-5 p.m.	Geology and Mineralogy

THE UNIVERSITY

THE COLLEGE OF SCIENCE, LITERATURE, AND THE ARTS

THE COLLEGE OF ENGINEERING AND THE MECHANIC ARTS

THE DEPARTMENT OF AGRICULTURE, including-THE COLLEGE OF AGRICULTURE THE COLLEGE OF FORESTRY, including-FOREST EXPERIMENT STATIONS AT ITASCA AND CLOQUET THE CENTRAL SCHOOL OF AGRICULTURE, UNIVERSITY FARM. including----THE DAIRY SCHOOL THE SHORT COURSE FOR FARMERS TEACHERS' SUMMER TRAINING SCHOOL THE SCHOOL OF TRACTION ENGINEERING THE NORTHWEST SCHOOL OF AGRICULTURE, CROOKSTON THE WEST CENTRAL SCHOOL OF AGRICULTURE, MORRIS THE EXPERIMENT STATIONS, including-THE MAIN STATION, ST. ANTHONY PARK THE NORTHWEST EXPERIMENT STATION, CROOKSTON THE NORTH CENTRAL EXPERIMENT STATION, GRAND RAPIDS THE WEST CENTRAL EXPERIMENT STATION, MORRIS THE NORTHWEST DEMONSTRATION FARM AND EXPERI-MENT STATION, DULUTH THE SOUTHEAST DEMONSTRATION FARM AND EXPERIMENT STATION, WASECA THE FRUIT BREEDING FARM, ZUMBRA HEIGHTS AGRICULTURAL EXTENSION THE LAW SCHOOL THE MEDICAL SCHOOL, including-THE SCHOOL FOR NURSES THE COLLEGE OF DENTISTRY THE COLLEGE OF PHARMACY

THE SCHOOL OF MINES, including— MINNESOTA SCHOOL OF MINES EXPERIMENT STATION

THE SCHOOL OF ANALYTICAL AND APPLIED CHEMISTRY

- THE COLLEGE OF EDUCATION
- THE GRADUATE SCHOOL

THE BOARD OF REGENTS

The Hon. JOHN LIND, Minneapolis, President of the Board	-	- 1914
GEORGE EDGAR VINCENT, Minneapolis	-	Ex-Officio
The President of the University		
The Hon. ADOLPH O. EBERHART, Mankato	-	Ex-Officio
The Governor of the State		-
The Hon. C. G. SCHULZ, St. Paul	_	Ex-Officio
The State Superintendent of Public Instruction		
The Hon. JOHN G. WILLIAMS, Duluth	-	- 1914
The Hon. A. E. RICE, Willmar	-	- 1915
The Hon. CHARLES L. SOMMERS, St. Paul	-	- 1915
The Hon. B. F. NELSON, Minneapolis		- 1916
The Hon. PIERCE BUTLER, St. Paul	-	- 1916
The Hon. FRED B. SNYDER, Minneapolis	-	- 1916
The Hon. W. J. MAYO, Rochester	-	- 1919
The Hon. MILTON M. WILLIAMS, Little Falls	-	- 1919

EXECUTIVE OFFICERS.

GEORGE EDGAR VINCENT, Ph.D., LL.D., President

- ERNEST B. PIERCE, B.A., Registrar
- GEORGE H. HAVES, University Comptroller and Secretary of the Board of Regents
- JAMES T. GEROULD, B.A., Librarian
- JOHN F. DOWNEV, M.A., C.E., Dean of the College of Science, Literature, and the Arts
- FRANCIS C. SHENEHON, C.E., Dean of the College of Engineering and the Mechanic Arts

ALBERT F. WOODS, M.A., Dean and Director of the Department of Agriculture

EDWARD M. FREEMAN, Ph.D., Assistant Dean of the Department of Agriculture

WILLIAM R. VANCE, Ph.D., LL.B., Dean of the Law School

- FRANK FAIRCHILD WESBROOK, M.A., M.D., C.M., Dean of the Medical School
- ALFRED OWRE, B.A., M.D., C.M., D.M.D., Dean of the College of Dentistry
- FREDERICK J. WULLING, Phm.D., LL.M., Dean of the College of Pharmacy
- WILLIAM R. APPLEBY, M.A., Dean of the School of Mines

GEORGE B. FRANKFORTER, M.A., Ph.D., Dean of the School of Chemistry

GEORGE F. JAMES, Ph.D., Dean of the College of Education

GUY STANTON FORD, Ph.D., Dean of the Graduate School

MARGARET SWEENEY, Ph.D., Dean of Women

THE SCHOOL OF MINES

FACULTY

GEORGE EDGAR VINCENT, Ph.D., LL.D., President CYRUS NORTHROP, LL.D., President, Emeritus WILLIAM R. APPLEBY, M.A., Dean and Professor of Metallurgy
928 5th St. S. E.
*CHARLES E. VAN BARNEVELD, B.A.Sc., E.M., Professor of Mining Engi-
neering 2110 Aldrich Ave. S.
CHARLES W. BENTON, Litt.D., Professor of Romance Languages
516 9th Ave. S. E.
PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy
217 Union St. S. E.
ELTING H. COMSTOCK, M.S., Professor of Mechanics and Mathematics
1416 7th St. S. E.
WILLIAM H. EMMONS, Ph.D., Professor of Mineralogy and Geology
217 The Leamington
JOHN J. FLATHER, Ph.B., M.M.E., Professor of Mechanical Engineering
315 11th Ave. S. E.
GEORGE B. FRANKFORTER, Ph.D., Professor of Chemistry
525 E. River Road
WILLIAM H. KAVANAUGH, M.E., Professor of Experimental Engineering
124 State St. S. E.
WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive
Geometry 722 10th Ave. S. E.
EDWARD P. MCCARTY, E.M., Professor of Mining 112 Church St. S. E.
JOHN G. MOORE, B.A., Professor of German
2810 University Ave. S. E.
LEVI B. PEASE, M.S., Professor of Metallurgy 1070 16th Ave. S. E.
GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Professor of Electrical Engi-
neering 717 E. River Road
CHARLES F. SIDENER, B.S., Professor of Chemistry 1320 5th St. S. E.
JOSEPH M. THOMAS, Ph.D., Professor of Rhetoric 623 14th Ave. S. E.
JOHN ZELENY, Ph.D., Professor of Physics 712 10th Ave. S. E.
FRANCIS C. FRARY, Ph.D., Assistant Professor of Chemistry
305 Walnut St. S. E.
JULES T. FRELIN, B.A., Assistant Professor of Romance Languages
112 Church St. S. E.
FRANK F. GROUT, M.S., Assistant Professor of Geology and Mineralogy
2150 Carter Ave., St. Paul
SAMUEL L. HOYT, E.M., Assistant Professor of Metallurgy
SAMUEL 12. HOYI, E.M., Assistant Professor of Metanurgy

*On leave of absence 1913-16.

MERTON S. KINGSTON, E.M., Assistant Professor of Mining

608 Oak St. S. E.

EDWIN M. LAMBERT, M.E., Assistant Professor of Mechanics and Mathematics 1086 12th Ave. S. E.

WILLIAM T. RVAN, E.E., Assistant Professor of Electrical Engineering 3228 4th St. S. E.

FREDERICK W. SARDESON, Ph.D., Assistant Professor of Paleontology 414 Harvard St. S. E.

S. CARL SHIPLEY, B.S., M.E., Assistant Professor of Machine Construction 1517 E. River Road

CHARLES F. SHOOP, B.S., Assistant Professor of Experimental Engineering 108 Beacon St. S. E.

INSTRUCTORS

OLIVER BOWLES, M.A., Instructor in Mineralogy and Geology 321 19th Ave. S. E. LILLIAN COHEN, M.S., Instructor in Chemistry 415 E. 14th St. EDWARD W. DAVIS, B.S., Instructor in Mechanics and Mathematics 112 Church St. S. E. ROBERT W. FRENCH, B.S., Instructor in Drawing 1018 16th Ave. S. E. A. WALFRED JOHNSTON, M.A., Instructor in Geology 417 Union St. S. E. ERVIN W. MCCULLOUGH, E.M., Instructor in Mining 90 Malcolm Ave. S. E. FRANKLIN R. MCMILLAN, C.E., Instructor in Experimental Engineering 321 Oak St. S. E. EDMUND NEWTON, E.M., Instructor in Metallurgy 32 Spruce Place PETER E. PETERSON, Instructor in Foundry Practice 3709 Clinton Ave. EARL PETTIJOHN, M.S., Instructor in Chemistry 3012 James Ave. S. WARREN T. POWELL, M.A., Instructor in Rhetoric 215 Harvard St. S. E. EDWARD P. QUIGLEY, Instructor in Forge Work 2923 Chicago Ave. WILLIAM H. RICHARDS, Instructor in Carpentry 1423 W. 27th St. FRANK B. ROWLEY, B.S., M.E., Instructor in Drawing 217 Beacon St. S. E. JAMES COXE SANDERSON, Ph.D., Instructor in Physics 1307 6th St. S. E. L. L. THURSTONE, M.E., Instructor in Drawing 320 Walnut St. S. E. EDGAR K. SOPER, B.A., Instructor in Economic Geology 417 Union St. S. E. WOLDEMAR M. STERNBERG, B.S.Chem., Instructor in Chemistry 1203 7th St. S. E. STERLING TEMPLE, Ph.D., Instructor in Chemistry 1758 Blair St., St. Paul WINIFRED GREGORY, Librarian

ADMISSION

The courses leading to the degrees of Engineer of Mines and Metallurgical Engineer may be completed in either four or five years. The course leading to the degree of Engineer of Mines (in Geology) may be completed in five years.

Students may enter the School of Mines without preparation in Higher Algebra and Solid Geometry. Such students must enter the fiveyear courses.

Students who enter the four-year courses with Higher Algebra and Solid Geometry must pass the entrance examinations in Mathematics given by the School. State High-School Board certificates will be accepted for all subjects except Mathematics.

It is recommended that students who come poorly prepared in Mathematics enter the five-year courses.

Examinations for admission in subjects other than Mathematics will be held at the beginning of the year. Examinations in Mathematics are held in June and September. See calendar and program of examinations.

No senior will be registered for the first semester's work after September 9, 1913.

No other students will be registered for the first semester's work after September 27, 1913, nor any student for the second semester's work after February 14, 1914.

All applicants should present themselves to the Chairman of the Enrollment Committee, Room 4, Main Engineering Building, who will furnish them with application blanks and directions covering examinations and registration.

Women will not be admitted to any course offered in the School of Mines.

GENERAL REGULATIONS GOVERNING ADMISSION

- I. Students will be admitted to the freshman class on passing the regular entrance examinations.
- II. No student will be admitted if conditioned in more than three half-year subjects, or their equivalent. No conditions, however, in entrance Mathematics shall be allowed except upon special permission of the Department of Mathematics.
- III. Graduates of any Minnesota State High School will be admitted to the five-year courses without examination, or to the four-year courses with examination in Mathematics, provided:

(1) That the school maintain a full four-year course of high-school work.

(2) That the applicant present to the Registrar the principal's certificate showing the satisfactory completion of all studies required for admission to the desired University course.

- IV. Graduates of Minnesota State High Schools who are deficient in not more than three half-year subjects or their equivalent, may be excused from entrance examinations in such subjects as the Enrollment Committee may decide upon; such candidates should present themselves to the Committee not later than Tuesday of examination week.
- V. Graduates of Minnesota State High Schools whose principal's certificate shows them to be deficient in more than three half-year subjects or their equivalent, even though they have made such additional preparation as they deem necessary, must take, nevertheless, the regular entrance examination in all subjects, as provided in Sections I and II, unless excused by vote of the Faculty; and persons wishing to present reasons for such excuse should report to the Enrollment Committee not later than Tuesday of examination week.
- VI. Graduates of the Advanced Courses of Minnesota Normal Schools will be admitted upon the same terms as graduates of State High Schools.
- VII. Any Minnesota high school or academy not under supervision of the State High-School Board, but requiring for graduation a four years' course, exclusive of the common school branches, conforming essentially in distribution of time to the entrance requirements of at least one of the University courses, will, upon application, be inspected by a committee, and, after favorable recommendation, may be accredited by the Faculty in all respects as are the State High Schools, provided:

(1) That the school be open to inspection at any time by the University.

(2) That it take such supplementary examinations as may be prescribed from time to time.

- VIII. Graduates from schools in other states, whose diplomas admit to reputable colleges in the state in which the school is located, will be received subject to the regulations that apply to graduates of Minnesota State High Schools.
- IX. Applicants coming from schools not included in any of the above classes must take the regular entrance examinations or present State High-School Board certificates.

In all cases the Faculty reserves the right to require a student to take supplementary examinations if he does not sustain himself creditably in his course.

The Enrollment Committee will meet every day during the week commencing Tuesday, September 9, in Main Engineering Building, Room 4, at 9:00 a.m.

REQUIREMENTS FOR ADMISSION TO THE FIVE-YEAR COURSES

The term *unit* means not less than five recitations of forty minutes each per week for a period of thirty-six weeks. In manual subjects and

ADMISSION

kindred courses, it means the equivalent of ten recitation periods per week for thirty-six weeks.

Required Subjects:

English	*four units
Elementary Algebra	one unit
Plane Geometry	one unit
Electives	nine units

REQUIREMENTS FOR ADMISSION TO THE FOUR-YEAR COURSES

Required Subjects:

Requireu Subjetis.
English*four units
Elementary Algebra
Higher Algebraone-half unit
Plane Geometry one unit
Solid Geometryone-half unit
Electiveseight units
Electives. (Eight units must be selected from this list for the four-year
courses and nine units for the five-year courses.)
Latin
Grammar, one unit
Caesar, four books, one unit
Cicero, six orations, one unit
Virgil, six books, one unit
Greek
Grammar, one unit
Anabasis, four books, one unit
German
Grammar, one unit
Literature, one to three units
French
Grammar, one unit
Literature, one to three units
Spanish
Grammar, one unit
Literature, one unit
Scandinavian Languages
Grammar, one unit
Literature, one unit
History
Ancient, to Charlemagne, one unit
Modern, from Charlemagne, one unit
English, one-half unit
Senior American, one-half unit

*Three units will satisfy the English requirement when the applicant presents four units in one foreign language. In this case a sufficient number of electives must be presented to make a total of fifteen entrance units. American Government, one-half unit Elementary Economics, one-half unit History of Commerce, one-half unit Commercial Geography, one-half or one unit Physics, one unit Chemistry, one unit Botany, one-half or one unit Zoology, one-half or one unit Astronomy, one-half unit Geology, one-half unit Physiography, one-half unit

Not more than four units are allowed in the following vocational subjects, including Business Subjects, Manual Subjects, and Agriculture. Business Subjects

Business Law, one-half unit Business Arithmetic, one-half unit Elementary Bookkeeping, one-half unit Advanced Bookkeeping and Business Practice, one unit Stenography and Typewriting, two units Manual Subjects Freehand Drawing, two units Mechanical Drawing, two units Shop Work, two units Modeling and Wood Carving, one unit Agriculture

One to four units from schools receiving special state aid for Agriculture, and also from other schools in which such course in Agriculture is approved by the State High School Board, as fast as the said schools are prepared to offer work in Agriculture.

DESCRIPTION OF SUBJECTS ACCEPTED FOR ADMISSION

A description of the subjects accepted for admission to the University will be found in the Bulletin of General Information, which will be sent to any address upon application to the Registrar, The University of Minnesota, Minneapolis, Minnesota.

ADVANCED STANDING

The University accepts records from other colleges for credit to advanced standing. Such records are accepted as far as they are equivalent to the work in this University, subject to the approval of the departments concerned. In bringing records from other institutions, the certificates must be on the official blanks of the institution granting the certificate, and should show:

ADMISSION

1. The subjects studied and ground covered.

2. The time spent upon each subject.

3. In case of laboratory subjects, a concise statement of work done.

4. The result. It is sufficient to state the subjects were creditably completed.

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrollment Committee.

DAILY ROUTINE

The daily session is divided into eight recitation periods of fifty minutes each, four in the morning and four in the afternoon. The morning session begins at 8:00 and closes at 12:00 o'clock; the afternoon session extends from 1:00 o'clock until 5:50 o'clock. A general assembly of the Faculty and students is held at 12:00 o'clock on Tuesdays, Thursdays, and Saturdays, at which there are brief and simple religious exercises. The noon hour extends from 12:00 to 1:00 o'clock. Work extends through six days of the week.

EXAMINATIONS

Students failing to receive a semester mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the Registrar his yearly average in all subjects and present himself for supplementary examinations, according to the program given on page iv.

No other supplementary examination will be given. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to receive a semester mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The Faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

All students who voluntarily register for Military Drill shall be required to drill the entire year and be subject to the same rules and regulations as other cadets. Such students must receive credit or honorable dismissal from the department before graduating.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination at the end of the first or second semester will be given zero on the examinations.

Students whose absences in either semester exceed four weeks in the aggregate are not permitted to take examinations without special permission of the Faculty.

A fee of five dollars per subject is required for each special examination.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

GRADUATION

Students completing courses of study to the satisfaction of the Faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examinations in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least one full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the Faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examinations held at the end of the second semester. Irregular attendance will debar a student from entering all final examinations.

THESES

The thesis work is intended to bring in review and connect the work in Mining and Metallurgy, Geology and Mineralogy, Mechanical and Electrical Engineering, Mathematics and Mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology, for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem, for candidates for the degree of Metallurgical Engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

ADMISSION

Prior to the re-opening of Field Work at the School of Mines, Tuesday, September 9, 1913, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on project must be under way by December 1. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the School.

SPECIAL INFORMATION

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of Engineer of Mines (E.M.), Engineer of Mines in Geology [E.M. (Geology)], and Metallurgical Engineer (Met.E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four or five years, and vice versa, provided such candidate completes an additional year's work at the School and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and the Mechanic Arts, and in the School of Analytical and Applied Chemistry, who contemplate taking a degree in this School after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

SUMMARY OF EXPENSES

FIRST YEAR-FIVE-YEAR COURSES

*Incidental fee\$55	.00
Books (estimated) 20	.00
Note-books and supplies (estimated)	. 00

FRESHMAN YEAR

*Incidental fee\$55	00
Books (estimated) 25	00
Draughting instruments (estimated) 15	.00
Note-books and supplies (estimated)	.00

SOPHOMORE YEAR

	\$55.00
Field work	Surveying Geological
(May 1 to July 1)	Geological Geological
Note-books and supplie	es (estimated) 5.00

JUNIOR YEAR

*Incidental fee				
Field work (May 1 to July 1) Rooks (estimated)	Metallurgy		175.00 t	0 250.00
(May 1 to July 1)	M1n1ng)			
Books (estimated).				30.00
Note-books and sup	oplies (estimated	l)		. 5.00

*This fee covers all laboratory expenses.

SENIOR YEAR

*Incidental fee\$	5.00
Books (estimated)	80.00
Note-books and supplies (estimated)	5.00

In addition to the first semester incidental fee a deposit fee of \$5.00 is required to cover such items as annual rental of post-office box, locker key deposit, condition examination fee, and late registration or late payment of fees. The unused balance will be returned at the end of the year.

REGISTRATION

Students having matriculated in previous years are required to indicate registration on proper blank not later than September 2. Fees must be paid in full on or before September 9.

For the second semester, registration must be indicated on or before January 20, and fees must be paid on or before January 27.

A penalty fee of one dollar will be charged all students who do not register or pay fees within the time specified, and, after one week, a fee of twenty-five cents per day for each day's delay will be added. The Registrar will send proper blanks to all students who were in college the previous year, on or before August 20. Students who fail to receive blanks at that date should call for them.

ORGANIZATION

The organization of the School of Mines dates back to 1889, when the General Faculty of the University recommended its establishment to the Board of Regents. In 1891 the Legislature of the State of Minnesota voted an appropriation for establishing and equipping the School. Two annual appropriations have since been made for its support. The Legislature of 1901 appropriated \$47,500 for a new School of Mines Building. In 1903 the Legislature appropriated \$25,000 for completing and equipping the School of Mines Building, and in 1905 an additional sum was provided for equipment.

EXPERIMENT STATION

The School of Mines Experiment Station has been recently established to promote the development of the mining and mineral resources of the State, to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates

^{*}This fee covers all laboratory expenses.

for the Tax Commission and to do such other work along the lines above outlined as may be requested by other state departments. Co-operation has been effected with the Minnesota Geological Survey and the School of Chemistry.

The Experiment Station is prepared to assist citizens interested in these lines of work; to assay specimens of ore, rocks, clays, and minerals found within the State free of charge.

In submitting samples the sender must state the exact location where each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the Office of the Station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, The University of Minnesota, Minneapolis, Minnesota.

LOCATION

The University of Minnesota is located in the city of Minneapolis, on the east bank of the Mississippi River. The School of Mines has its buildings and laboratories on the same ground. Students of the School of Mines have, therefore, all the opportunities afforded by a large university.

Minneapolis is surrounded by, and is in direct communication with, several important mining and smelting districts. As the city is a railroad center adequate transportation facilities are available.

FIELD WORK

Field work is conducted at the iron mines in the northern part of this State, in the copper and iron regions of Michigan, in the mines and smelters of Montana, Colorado, Utah, Arizona, and California, and in \times the coal mines of Pennsylvania.

At least one of these districts will be visited by each class, affording splendid opportunities for study and observation.

The field work in Mining and Metallurgy consists of two trips, one at the close of the sophomore year and one at the close of the junior year. For details, see pages 20 and 25.

Students must deposit with the Cashier, at least two weeks before time set for departure of class, a sum sufficient to cover following expense items:

1st. Board and lodging.

2d. Necessary mine supplies.

Transportation and incidental expenses are not included in the above items and must be met individually.

A statement of expenditures will be rendered at the close of the work and any balance existing will be refunded.

The amount of deposit required will vary according to the locality visited, and will be announced each year when arrangements for the trip are completed.

THE ELLIOT SCHOLARSHIP LOAN FUND

To fulfill the wish of the late Dr. A. F. Elliot to aid young men who find their efforts to obtain a practical education embarrassed through lack of means, the sum of \$5,000 was placed in the hands of the Board of Regents as a scholarship fund. The income from this fund is loaned students in the School of Mines on the following conditions: the financial needs of the applicant, his scholarship, moral character, enthusiasm shown in his work, and promise of usefulnesss in his profession. When money is available, it may be loaned to pay the expenses of worthy students during sickness. The loans are to be repaid, without interest, at the earliest convenience of the recipients.

LIBRARY

The library consists of about six thousand five hundred volumes. This number represents only those works that treat directly of mining, geological, and metallurgical subjects.

The School has a complete set of the leading mining and metallurgical journals and other similar books of reference. The leading periodicals are accessible to all. Constant references in lectures compel the student to keep himself well-informed as to the latest methods, machinery, and changes in practice going on in his special line of work.

In addition to the above, many thousand volumes on allied subjects complete a most valuable working and reference library. A card index is kept of all articles of value and interest appearing in the leading periodicals. An attendant is always in charge.

PHOTOGRAPHY

Photographs of surface and underground appliances, metallurgical plants, copies of drawings, and other photographs are indispensable to the study of Mining and Metallurgy. With the report of his field work every student is expected to present photographs, as well as sketches, of various objects under consideration. There is also a very complete set of lantern slides illustrating the principal methods of underground workings and metallurgical plants, at home and abroad. Several hundred slides have been made in the department's laboratory which bear directly on the work done in Minnesota and the neighboring northwest. Many valuable photographs are constantly being made. Blue prints of these are given students as illustrations. Much time, usually spent in making sketches and diagrams, is thus saved.

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thorough courses in Mechanics, Mathematics, Physics, and Chemistry.

(a) Geology—to determine the location of the ore.
(b) Mineralogy—to determine its nature.
(c) Assaying—to determine if it has value for treatment.
(d) Mining Engineering—to furnish material for treatment.
(e) Ore Testing—to determine best methods of treatment.
(f) Ore Dressing—furnishing products for metallurgical treatment.
(g) Metallurgy —smelting and refining ores and ore dressing products; reduction to metals.

COURSES IN MINING ENGINEERING

COURSES LEADING TO THE DEGREE OF E.M.

FIRST YEAR-FIVE-YEAR COURSES

First Semester

Chemistry 1, General, six hours

Mathematics 1, Algebra, four hours

Mathematics 3, Computation and Mensuration, three hours

Mechanical Engineering 3, Foundry Practice, six hours

Rhetoric 15, four hours

Spanish 11, Beginning, three hours

Second Semester

Chemistry 1, General, six hours Mathematics 2, Solid Geometry and Mensuration, three hours Mathematics 4, Mine Accounting, three hours Mechanical Engineering 2, Blacksmithing, six hours (nine weeks) Mechanical Engineering 1, Carpentry, six hours (nine weeks) Rhetoric 15, four hours Spanish 11, Beginning, three hours

FRESHMAN YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Chemistry 2, General and Qualitative Analysis, five hours Drawing 11, Engineering Drawing, ten hours Mathematics 5, Algebra and Trigonometry, six hours Mineralogy 1, General Mineralogy, eight hours

Second Semester

Chemistry 3, Qualitative Analysis, seven hours Drawing 12, Engineering Drawing, eight hours Mathematics 6, Trigonometry and Analytic Geometry, six hours Metallurgy 1, Assaying, twelve hours Mineralogy 2, Physical Mineralogy, four hours

SOPHOMORE YEAR—FOUR- AND FIVE-YEAR COURSES

First Semester

Chemistry 4, Quantitative Analysis, seven hours Drawing 13, Descriptive Geometry, two hours Mathematics 7, Analytic Geometry and Calculus, five hours Metallurgy 2, General and Iron, three hours Mining 1, Mine Surveying, three hours Physics 1, General, three hours Physics 2, Laboratory Practice, two hours Second Semester Chemistry 5, Volumetric Analysis, seven hours Drawing 14, Drafting, four hours Geology 3, Elements of Geology, three hours -

Geology 9, Rock Study, four hours

Mathematics 8, Calculus, three hours

Metallurgy 3, Wrought Iron and Steel, three hours

Mining 1, Mine Surveying, three hours

Mining 2, one hour

Physics 3, General, three hours

Physics 4, Laboratory Practice, two hours

Field Work. Months of May, June, July, and August Mining 3, Surveying, beginning about May 1
Geology 3a, beginning about June 15
Underground Mining Work, beginning about July 1

JUNIOR YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Experimental Engineering 1, Strength of Materials, four hours Geology 4, Historical and Economic Geology, three hours

Mechanics 9, five hours

Mechanics 11, Mine Plant, six hours

Metallurgy 4, Base Metals, four hours

Mining 4, five hours

Second Semester

Experimental Engineering 2, Steam Laboratory, four hours

Geology 10, Petrology, four hours

Mechanics 10, six hours

Metallurgy 5, Precious Metals, four hours

Mining 5, five hours

Mining 6, three hours

Mining 7, Ore Dressing, five hours

Mining 8, Mine Mapping, six hours

Field Work. Months of May, June, July, and August Metallurgy 10, beginning about May 1 Mining 9, beginning about May 15 Underground Mining Work, beginning about June 1

SENIOR YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Chemistry 14, Special Problems, seven hours

Electrical Engineering 4, Electric Power, five hours

Geology 12, Ore Deposits, four hours

Mechanics 13, Water Power, five hours

Mechanics 15, Engineering Construction, five hours

Metallurgy 6, Ore Testing, ten hours

Mining 10, Mining Engineering, five hours

Mining 13, Thesis, two hours

Second Semester

Chemistry 11a, Iron and Steel Analysis, seven hours Experimental Engineering 5, Experimental Laboratory, four hours Geology 13, Special Problems, four hours

COURSES IN MINING ENGINEERING

Mechanics 16, Mine Plant Design, six hours Mining 11, Mining Engineering, five hours Mining 12, Designs and Specifications, eight hours Mining 13, Thesis, four hours

COURSES LEADING TO THE DEGREE OF E.M. (GEOLOGY)

FIRST YEAR

First Semester

Chemistry 1, General, six hours

Drawing 11, Engineering Drawing, ten hours

French 1 or 3, three hours

or

German 1 or 4, three hours

Mathematics 1, Algebra, four hours

Rhetoric 15, four hours

Second Semester

Chemistry 1, General, six hours

Drawing 12, Engineering Drawing, eight hours

French 1 or 3; three hours

or

German 1 or 4, three hours

Mathematics 2, Solid Geometry and Mensuration, three hours Rhetoric 15, four hours

FRESHMAN YEAR

First Semester

Chemistry 2, General and Qualitative Analysis, five hours French 2 or 5, three hours

or

German 3 or 7, three hours

Mathematics 5, Algebra and Trigonometry, six hours

Mineralogy 1, General Mineralogy, eight hours

Second Semester

Chemistry 3, Qualitative Analysis, seven hours French 2 or 5, three hours

or

German 3 or 7, three hours

Mathematics 6, Trigonometry and Analytic Geometry, six hours Metallurgy 1, Assaying, twelve hours

Mineralogy 2, Physical Mineralogy, four hours

SOPHOMORE YEAR

First Semester

Chemistry 4, Quantitative Analysis, seven hours Drawing 13, Descriptive Geometry, two hours Mathematics 7, Analytic Geometry and Calculus, five hours Mineralogy (Advanced), three hours Mining 1, Mine Surveying, three hours Physics 1, General, three hours

Physics 2, Laboratory Practice, two hours

Second Semester

Chemistry 5, Volumetric Analysis, eight hours

Drawing 14, Drafting, four hours

Geology 3, Elements of Geology, three hours

Geology 9, Rock Study, four hours

Mathematics 8, Calculus, three hours

Metallurgy, three hours

Mining 1, Mine Surveying, three hours

Mining 2, one hour

Physics 3, General, three hours

Physics 4, Laboratory Practice, two hours

Field Work. Months of May, June, July, and August Mining 3, Surveying, beginning about May 1 Geology 3a, beginning about June 15 Special Geological Field Work, beginning about July 1

JUNIOR YEAR

First Semester.

Geology 4, Historical and Economic Geology, three hours Mechanics 9, five hours

Mining 4, five hours

Geology 14, Paleontology, three hours

Electives, ten hours

Second Semester

Geology 10, Petrology, four hours

Mechanics 10, six hours

Mining 5, five hours

Mining 6, three hours

Mining 7, Ore Dressing, five hours

Mining 8, Mine Mapping, six hours

Geology 15, Paleontology (Practice), nine hours

Field Work. Months of May, June, July, and August Mining 9, beginning about May 15 Underground Mining Work, beginning about June 1 Practical Geology, beginning about July 1

SENIOR YEAR

First Semester

Geology 12, Ore Deposits, four hours Geology of Lake Superior District, five hours General and Mining Law, three hours Mechanics 13, Water Power, five hours Mining 10, Mining Engineering, five hours Thesis, ten hours

Second Semester

Geology 13, Special Problems, four hours Geology 13a, Seminar in Ore Deposits, three hours

18

COURSES IN MINING ENGINEERING

Geology of Western Mining Districts, five hours Mining 11, Mining Engineering, five hours Electives, five hours Thesis, ten hours

DEPARTMENT OF MINING ENGINEERING

Mining Engineering extends through the sophomore, junior, and senior years. The subjects given, together with the sequence necessary, are treated in the accompanying outline of the course.

In the senior year, problems in hoisting, hauling, pumping, ventilation, and similar subjects become an important part of the work.

DESIGNS AND SPECIFICATIONS

The student makes, in connection with his thesis work, working drawings of mine cars, skips, and other parts of mine equipment that are usually designed and made at the mine.

MINE SURVEYING

The work in Surveying is given in the sophomore year and is designed solely for mining engineers.

The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabi or Vermilion Range. The exact location will be announced in March of each year.

The students will be divided into squads of two to four. Each squad must provide itself with a 6-foot steel tape graduated to hundredths. The duration of the course will be seven weeks $(5\frac{1}{2})$ days of 8 hours each constitute a week). Each student will be required to complete satisfactorily the following exercises and surveys:

- 1. Chaining and taping
- 2. Compass work
- 3. Adjustment and use of wye and dumpy levels
- 4. Adjustment of mining transit
- 5. Reading angles
- 6. Traverse with transit and steel tape
- 7. Azimuth traverse with stadia
- 8. Determination of meridian, latitude, and time by solar and stellar observations
- 9. Survey of mining claim according to the regulations of the U.S. Government
- 10. Measurement of earthwork

11. Laying out railroad tangents, curves, and crossings

12. Exercises in plane table work and geological surveying

13. The survey of a mine.

A full equipment of surveying instruments of the latest and best makes is furnished to each squad for this work.

This is followed by a course in Mine Mapping during the second semester of junior year.

Students who furnish satisfactory evidence of proficiency in this work may be given credit therefor. The department, however, reserves the right in any case to require such students to take a theoretical or a practical examination or both.

FIELD WORK IN MINING

Sophomore Year

After the close of the field work in Geology (last two weeks in June), members of the sophomore class are required to engage for six weeks in underground mining work on the Minnesota or Michigan iron ranges, for which they may receive wages.

Junior Year

Upon termination of the junior field work in Metallurgy (about May fifteenth), the members of the junior class, who are candidates for the degree of Engineer of Mines, are required to devote two weeks to the study of mine plant and mine operation under the direction of the department. This work will be given in one of the leading western metal mining districts, exact location to be announced in April of each year. Thereafter, during the months of June, July, and August, the student is required to spend at least eight weeks in actual underground mining work in the West, for which he may receive wages. The department will render all possible assistance in locating students in the camps of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must in person submit this diary to the department on the date of the reopening of field work. In judging the character of the student's field work, equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note books considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 9, 1913. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering Field Work in Mine Mapping, Mining, and Mctallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned.

The program covering this work is as follows: Metallurgy, September 9-16 inclusive; Mining, September 17-29.

On September 29 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn to scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before September 29. These reports shall become the property of the School.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reason, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

ORE DRESSING

The lectures and recitations in Ore Dressing extends through the second semester of the junior year, and comprise the detailed study of ore dressing and concentrating machinery, together with the study of typical combinations of dressing machines as found in the several mining districts of the United States.

In connection with the theoretical work, the ore dressing and testing plant of the School is utilized for practical illustrations.

COURSES IN METALLURGY

COURSES LEADING TO THE DEGREE OF MET. E.

FIRST YEAR-FIVE-YEAR COURSES

First Semester

Chemistry 1, General, six hours Mathematics 1, Algebra, four hours Mathematics 3, Computation and Mensuration, three hours Mechanical Engineering 3, Foundry Practice, six hours Rhetoric 15, four hours Spanish 11, Beginning, three hours

Second Semester

Chemistry 1, General, six hours

Mathematics 2, Solid Geometry and Mensuration, three hours Mathematics 4, Mine Accounting, three hours

Mechanical Engineering 2, Blacksmithing, six hours (nine weeks) Mechanical Engineering 1, Carpentry, six hours (nine weeks)

Rhetoric 15, four hours

Spanish 11, Beginning, three hours

FRESHMAN YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Chemistry 2, General and Qualitative Analysis, five hours Drawing 11, Engineering Drawing, ten hours Mathematics 5, Algebra and Trigonometry, six hours Mineralogy 1, General Mineralogy, eight hours

Second Semester

Chemistry 3, Qualitative Analysis, seven hours Drawing 12, Engineering Drawing, eight hours Mathematics 6, Trigonometry and Analytic Geometry, six hours Metallurgy 1, Assaying, twelve hours Mineralogy 2, Physical Mineralogy, four hours

SOPHOMORE YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Chemistry 4, Quantitative Analysis, seven hours

Drawing 13, Descriptive Geometry, two hours

Mathematics 7, Analytic Geometry and Calculus, five hours

Metallurgy 2, General and Iron, three hours

Mining 1, Mine Surveying, three hours

Physics 1, General, three hours

Physics 2, Laboratory Practice, two hours

Second Semester

Chemistry 5, Volumetric Analysis, seven hours

Drawing 14, Drafting, four hours

Geology 3, Elements of Geology, three hours

Geology 9, Rock Study, four hours

Mathematics 8, Calculus, three hours

Metallurgy 3, Wrought Iron and Steel, three hours

Mining 1, Mine Surveying, three hours

Mining 2, one hour

Physics 3, General, three hours

Physics 4, Laboratory Practice, two hours

Field Work. Months of May, June, July, and August Mining 3, Surveying, beginning about May 1 Geology 3a, beginning about June 15 Underground Mining Work, beginning about July 1

JUNIOR YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Experimental Engineering 1, Strength of Materials, four hours

Geology 4, Historical and Economic Geology, three hours

Mechanics 9, five hours

Mechanics 11, Mine Plant, six hours

Metallurgy 4, Base Metals, four hours

Mining 4, five hours

Second Semester

Experimental Engineering 2, Steam Laboratory, four hours Geology 10, Petrology, four hours

Geology 10, Fellology, Iour nou

Mechanics 10, six hours

Metallurgy 5, Precious Metals, four hours

Mining 5, five hours

Mining 6, three hours

Mining 7, Ore Dressing, five hours

Mining 8, Mine Mapping, six hours

Field Work. Months of May, June, July, and August Metallurgy 10, beginning about May 1 Mining 9, beginning about May 15
Smelter Work, beginning about June 1

SENIOR YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Chemistry 14, Special Problems, seven hours Electrical Engineering 4, Electric Power, five hours Mechanics 13, Water Power, five hours Mechanics 15, Engineering Construction, five hours Metallurgy 6, Ore Testing, ten hours Metallurgy 7, Special Problems, eight hours Metallurgy 8, Electro-Metallurgy, three hours Second Semester Chemistry 22, Electro-Chemical Analysis, five hours Chemistry 11a, Iron and Steel Analysis, seven hours Experimental Engineering 5, Experimental Laboratory, four hours Mechanics 18, Mill and Smelter Design, six hours Metallurgy 9, Metallography, six hours Metallurgy 11, Thesis, ten hours

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use.

The practical work consists in visits to smelting and refining works which are accessible. The work in Metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces' fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags are shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their reports in detail. This work is offered to students completing the necessary courses in Mineralogy and Chemistry.

ORE TESTING

The lectures treat of the use and purposes of all the machinery connected with the subject, supplemented by detailed drawings.

There are complete testing works connected with the department where the student may see the working of, and handle for himself, crushers, rolls, Huntington mill, concentrating machinery, such as vanners, buddles, jigs, pan for amalgamation, settlers, reverberatory furnaces for oxidizing and oxidizing-chloridizing roasts, leaching and chlorination plants, as well as sizing apparatus and hydraulic separators. Sufficiently large amounts of ore are given to make the necessary tests upon the different machines and the students report the best method of treatment. The first semester of the senior year is devoted to instruction and laboratory work, and is required of students both in Mining and Metallurgy.

The ore-testing works meet educational, as well as commercial, needs.

COURSES IN METALLURGY

Educational.—The ore-testing plant acquaints the student with the construction and manipulation of the principal typical machines used in the leading ore-dressing establishments of the country. It is here that students in Mining and Metallurgical Engineering get the requisite practical experience. They handle all machines and operate on sufficiently large amounts of material to determine the methods best suited to a given ore to extract the largest amount of metal with the least possible loss.

Commercial.—Ore-testing works are an important factor in mining and metallurgical projects. The commercial object is to determine the best method of treating a given ore so as to yield the largest percentage of the metal it contains at the least possible cost. Samples varying from 500 pounds to car-load lots can be treated by various methods.

As the funds appropriated for the erection of such a plant were sufficient to purchase only the necessary machinery, the business men of Minneapolis generously provided a suitable building. This building, 94 by 66 feet, is built of brick and stone.

Machinery.-The plant contains all the machinery necessary to illustrate the various processes of ore testing, viz., a Bridgman mechanical sampler, size B; a link belt bucket elevator; a pulley feeder complete; a pair of 121/2 by 12 geared rolls complete; a four compartment spitzkasten; a three compartment Hartz jig; a Collum jig complete with cone for driving; a three and a half foot Huntington mill complete; a three-stamp mill, 275-pound stamps; a five-stamp mill, 850-pound stamps; a Challenge automatic feeder for five-stamp battery; a suspended Challenge feeder for three-stamp battery; a Tulloch feeder for Huntington mill; a single deck buddle, twelve feet in diameter; a four-foot plain belt Frue vanner; a Cammett concentrator; a Hooper pneumatic concentrator; a Century drop motion jig; a three-foot amalgamating pan; a five-foot settler; a Bruckner roasting furnace, with fire box on wheels; a chlorination barrel; a battery tightener; a two-horse-power vertical boiler; a steam drying pan; three trommels, with driving arrangement and gcars; a one-thousand pound Reedy elevator, complete with worm gear; two overhead crawls, each with eighty-foot track; one-ton pulley block; a quarter-ton pulley block; a scoop car, with flat wheels; two twenty-horse-power electric motors; three MacDermott automatic samplers, etc.

FIELD WORK IN METALLURGY

At the end of the junior year opportunity is given the student to study metallurgical operations at one or more smelting works. This work will begin about May 1. Not over two weeks' time will be devoted to this work.

Upon termination of the junior field work in Metallurgy and two weeks in Mining (not later than June 1), the members of the junior class who are candidates for the degree of Metallurgical Engineer, are required to spend at least eight weeks in practical work in one or more of the smelters of the West, for which he may receive wages. The department will render all possible assistance in locating students in the camps of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must, in person, submit this diary to the department on date of reopening of field work. In judging the character of the student's field work equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 9, 1913. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering field work in Metallurgy and Mining must be prepared at the School of Mines under the direct supervision of the departments concerned.

The program covering this work is as follows: Metallurgy, September 9-20, inclusive; Mining, September 22-30.

On September 29 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn to scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before September 29. These reports shall become the property of the School.

DEPARTMENTAL STATEMENTS

CHEMISTRY

GEORGE B. FRANKFORTER, Ph.D., Professor	114 Chemistry Building
CHARLES F. SIDENER, B.S., Professor	203 Chemistry Building
FRANCIS C. FRARY, Ph.D., Assistant Professor	108 Chemistry Building
LILLIAN COHEN, M.S., Instructor	106 Chemistry Building
EARL PETTIJOHN, M.S., Instructor	205 Chemistry Building
WOLDEMAR M. STERNBERG, B.S. Chem., Instru	actor
	205 Chemistry Building

STERLING TEMPLE, Ph.D., Instructor

1. General Chemistry

207 Chemistry Building

*Six credits (six hours per week); both semesters. Required of firstyear students, five-year courses.

Recitation and laboratory work. The course includes a study of the common elements and their compounds, with an introduction to the modern theories of chemistry.

2. General and Oualitative Analysis

Professor FRANKFORTER and Mr. TEMPLE Four credits (three lectures, two laboratory hours per week); first semester. Required of freshmen.

The course includes special general chemistry and the reactions of the metals as applied to their separation and identification.

3. Qualitative Analysis Professor FRANKFORTER and Mr. TEMPLE Four credits (one lecture, six laboratory hours per week); second Open to students completing Course 2. Required of freshmen. semester.

The work in this course will include examination of alloys, minerals, slags, and other compounds.

4. Quantitative Analysis

Professor Sidener, Messrs. Pettijohn and Sternberg Four credits (one lecture, six laboratory hours per week); first semester. Open to students completing Course 3. Required of sophomores.

The course includes an introduction to quantitative, and a beginning of gravimetric analysis.

5. Volumetric Analysis

Professor Sidener, Messrs. PETTIJOHN and STERNBERG Four credits (one lecture, six laboratory hours per week); second semester. Open to students completing Course 4. Required of sophomores.

The course includes an introduction to volumetric determinations with a discussion of standard solutions and the necessary stoichiometric calculations.

*A credit is one recitation or lecture hour per week, per semester. Two laboratory hours are equal to one credit.

Miss Cohen

11a. Iron and Steel Analysis

Professor SIDENER, Messrs. PETTIJOHN and STERNBERG Four credits (one lecture, six laboratory hours per week); second semester. Open to students completing Course 14. Required of seniors in E. M. and Met. E. Courses.

The course includes the rapid determination of iron by the various methods, as well as the determination of associated elements, sulphur, phosphorus, silicon, manganese, carbon, and others.

14. Special Problems

Professor SIDENER, Messrs. PETTIJOHN and STERNBERG Four credits (one lecture, six laboratory hours per week); first semester. Open to students completing Course 4. Required of seniors in E. M. and Met. E. Courses.

The course includes the working out of various mineralogical, technological, and metallurgical problems, with work on ores of base metals, limestones, slags, etc.

22. Electro-Chemistry

Assistant Professor FRARY Three credits (one lecture, four laboratory hours per week): second

semester. Open to students completing Course 4. Required of seniors in Met. E. Course.

The course includes the qualitative and quantitative separation of metals by electrolysis.

DRAWING AND DESCRIPTIVE GEOMETRY

WILLIAM H. KIRCHNER, B.S., Professor 208 Main Engineering Building FRANK B. ROWLEY, B.S., M.E., Instructor

207 Main Engineering Building

ROBERT W. FRENCH, B.S., Instructor L. L. THURSTONE, M.E., Instructor 111 Main Engineering Building

211 Main Engineering Building

Professor KIRCHNER

11. Engineering Drawing Professor KIRCHNER and Mr. THURSTONE Five credits (ten drafting hours per week); first semester. Required

of freshmen in E. M. and Met. E. Courses, and of first-year students in E. M. (Geol.) Course.

Sketching, lettering, representation, parallel and radial projection, elements of engineering drawing, representation of details of machines and structures, interpretation of working drawings.

12. Engineering Drawing

Mr. THURSTONE Four credits (eight drafting hours per week); second semester. Open to students completing Course 11. Required of freshmen in E. M. and Met. E. Courses, and of first-year students in E. M. (Geol.) Course.

Continuation of Course 11 as outlined above. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. Maps and sketches. Brush and pen conventions.

13. Descriptive Geometry

Two credits (two lectures per week); first semester. Open to students completing Course 12 and Mathematics 6. Required of sophomores.

Projection--central and special cases, principles and applications, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems.

14. Drafting

Mr. FRENCH

Two credits (four drafting hours per week); second semester. Open to students completing Course 13. Required of sophomores.

Graphics, machine drafting, and structural drafting. Instruction in drafting room methods.

ELECTRICAL ENGINEERING

GEORGE D. SHEPARDSON, M.A., M.E., Professor

30 Electrical Engineering Building

WILLIAM T. RYAN, E.E., Assistant Professor

14 Electrical Engineering Building

4. Electric Power Assistant Professor RVAN Three credits (one lecture, four laboratory hours per week); first semester. Open to students completing Physics 3 and 4. Required of seniors in E. M. and Met. E. Courses.

Elements of theory and practice of electrical measurements, wiring, dynamos, motors, and electric lighting.

EXPERIMENTAL ENGINEERING

WILLIAM H. KAVANAUGH, M.E., Professor

107 Experimental Engineering Building CHARLES F. SHOOP, B.S., Assistant Professor

106 Experimental Engineering Building FRANKLIN R. MCMILLAN, C.E., Instructor

106 Experimental Engineering Building

 Strength of Materials Two credits (four laboratory hours per week); first semester. Open to students taking Mechanics 9. Required of juniors in E. M. and Met. E. Courses.

Laboratory work, investigating the strength and physical qualities of iron, steel, brass, copper, belting, chains, beams, brick, and stone.

 Steam Laboratory Assistant Professor SHOOP Two credits (four laboratory hours per week); second semester.
 Open to students completing Course 1. Required of juniors in E. M. and Met. E. Courses.

Exercises in valve setting, indicator practice, calibration of steam gauges, efficiency of screws and hoists.

5. Experimental Laboratory Professor KAVANAUGH Two credits (four laboratory hours per week); second semester. Open to students completing Course 2. Required of seniors in E. M. and Met. E. Courses.

Hydraulic measurements. Calibration of weirs, nozzles, meters, and other hydraulic apparatus, calorimetry; tests of pumps, engines, and boilers.

THE SCHOOL OF MINES

FRENCH AND SPANISH

CHARLES W. BENTON, M. A., Litt.D., Professor of Romance Languages 200 Folwell Hall CHARLES M. ANDRIST, M.L., Professor 228 Folwell Hall

JULES T. FRELIN, B.A., Assistant Professor

228 Folwell Hall

Assistant Professor FRELIN

FRENCH

1. Beginning Professor ANDRIST and Assistant Professor FRELIN Six credits (three hours per week); both semesters. Open to firstvear students in E. M. (Geol.) Course.

French Grammar and Reader: modern texts.

2. Intermediate Assistant Professor ANDRIST Six credits (three hours per week); both semesters. Open to students completing Course 1.

Modern texts will be read, including some of the works of Coppée, Mérimée, Daudet, Scribe, etc.

3. Advanced Grammar and Composition Assistant Professor ANDRIST Six credits (three hours per week); both semesters. Open to students

in E. M. (Geol.) Course who enter with two years of French.

Readings from modern authors, including selections from Coppée, Feuillet, and Sandeau.

5. The Classical Period of French Literature Professor BENTON Six credits (three hours per week); both semesters. Open to students completing Course 2 or 3.

The reading of works and selections produced during the classical period of French literature, and conversations in French concerning the same. The works of Corneille, Racine, Molière, La Fontaine, etc. Compositions.

SPANISH

11. Beginning

Six credits (three hours per week); both semesters. Required of first-year students in E. M. and Met. E. Courses.

Monsanto and Languellier, Spanish Course-Josselyn; Worman, First Spanish Book; Bransby, Spanish Reader.

GEOLOGY AND MINERALOGY

WILLIAM H. EMMONS, Ph.D., Professor	108 Pillsbury Hall
FRANK F. GROUT, M.S., Assistant Professor	102 Pillsbury Hall
FREDERICK W. SARDESON, Ph.D., Assistant Professor	
	103 Pillsbury Hall
OLIVER BOWLES, M.A., Instructor	102 Pillsbury Hall
A. WALFRED JOHNSTON, M.A., Instructor	112 Pillsbury Hall
EDGAR K. SOPER, M.A., Instructor	112 Pillsbury Hall

1. General Mineralogy Assistant Professor Grout and Mr. BowLes Six credits (four lectures, four laboratory hours per week); first semes-

ter. Required of freshmen.

The development of the systems of crystallization; the morphological, physical, and chemical characters of minerals; classification and description of common minerals; laboratory work, involving the application of chemical and blowpipe tests to the identification of species, with demonstrations; determination of minerals by physical properties, and sight identification. The occurrence, genesis, and use of minerals.

2. Physical Mineralogy Assistant Professor GROUT and Mr. BOWLES Three credits (two lectures, two laboratory hours per week); second

semester. Open to students completing Course 1. Required of freshmen. A continuation of Course 1, special attention being given to economic and rock-forming minerals. Laboratory work, mineral determination and sight identification; introduction to the use of the goniometer and microscope. Reference reading and field excursions.

3. Elements of Geology

Three credits (three lectures per week); second semester. Required of sophomores.

The course is a synoptical treatment of the materials of the earth and of geologic processes; physiographic, structural, and dynamic geology, with a brief introduction to historical geology. Geologic structure is emphasized and the lectures are reinforced by the study of geologic maps.

3a. Field Work

Mr. JOHNSTON and ASSISTANTS

One credit (first two weeks in June). Required of sophomores.

A two-week excursion to the Iron Ranges for practice in field methods, such as tracing contacts, working out structures, and constructing and interpreting geologic maps.

4. Historical and Economic Geology

Professor EMMONS and Mr. SOPER

Three credits (three lectures per week); first semester. Required of juniors.

(a) Historical Geology. The geologic history of North America, with special reference to its syngenetic mineral deposits.

(b) Economic Geology. A study of the occurrence, genesis, distribution, and uses of the non-metallic minerals of economic value, including a discussion of the geologic guides to prospecting for these deposits.

9. Elements of Rock Study

Assistant Professor GROUT and Mr. BOWLES Two credits (four laboratory hours per week); second semester. Open to students completing Course 3. Required of sophomores.

The composition of the earth's crust, a general treatment of the origin, occurrence, and genesis of igneous, sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and physical constitution; the alteration of rocks, the classification of igneous rocks; an introduction to the use of the microscope.

10. Petrology Assistant Professor GROUT and Mr. BOWLES Two credits (four laboratory hours per week); second semester. Open to students completing Course 9. Required of juniors.

Mr. SOPER

Laboratory work, lectures, and reference reading. The identification of minerals and rocks by optical study; a study of igneous rocks, followed by that of crystalline schists and metamorphic rocks; the origin and classification of rocks.

12. Ore Deposits Professor EMMONS and Mr. SOPER Four credits (four lectures per week); first semester. Open to students completing Course 10. Required of seniors.

A discussion of ore deposition; the nature, distribution, and genesis of metalliferous ore deposits of the United States. A study of the relation of ore deposits to geologic structure and of the changes which ore deposits undergo through oxidation and related processes. The course includes laboratory work illustrating the use of mine maps and geologic cross sections through mines, and detailed laboratory studies of reports on mining districts.

13. Special Problems in Ore Deposits

Professor EMMONS and Mr. SOPER Two credits (four laboratory hours per week); second semester. Open to students completing Course 12. Required of seniors in E. M. and E. M. (Geol.) Courses.

Lectures on field and laboratory methods. A study of metallogenic epochs and metallographic provinces, particularly those of the United States.

13a. Seminar in Ore Deposits Three credits (three hours per week); second semester. Open to students completing Course 12. Required of seniors in E. M. (Geol.) Course.

Selected problems. Development of methods of research.

14. Introduction of Paleontology Assistant Professor SARDESON Three credits (three hours per week); first semester. Junior year. Reading, lectures, and demonstrations. A study of the characters of leading types of fossils.

15. Paleontologic Practice Assistant Professor SARDESON Six credits (three lectures and six laboratory hours per week); second semester. Junior year.

Fossil collecting and preparation; identification and use of fossil species; index fossils and fauna-floras of the geologic series and formations.

GERMAN

JOHN G. MOORE, B.A., Professor of German	210 Folwell Hall
OSCAR C. BURKHARD, M.A., Assistant Professor	214 Folwell Hall
RICHARD WISCHKAEMPER, M.A., Instructor	216 Folwell Hall

1. Beginning Assistant Professor BURKHARD and Mr. WISCHKAEMPER Six credits (three hours per week); both semesters. Open to firstvear students in E. M. (Geol.) Course.

Pronunciation, grammar, conversation and composition; selected reading in easy prose and verse.

3. Scientific Intermediate

Assistant Professor BURKHARD and Mr. WISCHKAEMPER

Six credits (three hours per week); both semesters. Open to students completing Course 1.

This course is arranged to meet the peculiar needs of students of the School of Mines. Text: Merekel's *Bilder aus der Ingenieurtechnik*.

4. Prose and Poetry

Professor MOORE, Assistant Professor BURKHARD, and Mr. WISCH-KAEMPER

Six credits (three hours per week); both semesters. Open to firstyear students in E. M. (Geol.) Course who enter with two years of German.

Stern's Aus deutschen Meisterwerken; Goethe's Gedichte; Heine's Buch der Lieder. Geography, history, and legend. Review of German grammar throughout the year. This course may be supplemented.

7. Advanced Scientific Reading Assistant Professor BURKHARD Six credits (three hours per week); both semesters. Open to students who have taken Course 3 or 4.

Reading of scientific monographs and periodicals.

MECHANICAL ENGINEERING

JOHN J. FLATHER, Ph.B., M.E., Professor

105 Mechanical Engineering Building S. CARL SHIPLEY, B.S., M.E., Assistant Professor

WILLIAM H. RICHARDS, Instructor100 Mechanical Engineering BuildingEDWARD QUIGLEY, Instructor207 Mechanical Engineering BuildingPETER PETERSON, Instructor111 Mechanical Engineering Building112 Mechanical Engineering Building

1. Carpentry

Mr. RICHARDS

Mr. Peterson

Four credits (six hours per week, nine weeks); second semester. Required of first-year students, five-year E. M. and Met. E. Courses.

Wood working, use of tools; lathe and bench work. Patterns for moulding, core boxes, flasks. Lectures and practice.

2. Blacksmithing Assistant Professor SHIPLEY and Mr. QUIGLEY Two credits (six hours per week, nine weeks); second semester. Required of first-year students, five-year E. M. and Met. E. Courses.

Use of tools, forging, welding, tool dressing, tempering. Lectures and practice.

3. Foundry Practice

Three credits (six hours per week, eighteen weeks); first semester. Required of first-year students, five-year E. M. and Met. E. Courses.

Moulding, casting, mixing metals, brass work, and core making. Shop practice, recitations, and lectures.

MECHANICS AND MATHEMATICS

ELTING H. COMSTOCK, M.S., Professor 4 Main Engineering Building EDWIN M. LAMBERT, M.E., Assistant Professor

4 Main Engineering Building

EDWARD W. DAVIS, B.S., Instructor

4 Main Engineering Building

1. Algebra

Mr. DAVIS

Four credits (four recitations per week); first semester. Required of first-year students, five-year courses.

Review of Elementary Algebra, equations with one, two, or more unknown quantities, inequalities, involution and evolution, theory of exponents, surds, quadratic equations both numerical and literal, equations with one or more unknown quantities that can be solved by means of quadratic equations, progressions.

2. Solid Geometry and Mensuration Mr. DAVIS Three credits (three recitations per week); second semester. Required of first-year students, five-year courses.

Demonstrations of most important theorems, volumes, approximate volumes, prismoidal formula, etc.

3. Computation and Mensuration Assistant Professor LAMBERT Three credits (three recitations per week); first semester. Required of first-year students, five-year E. M. and Met. E. Courses.

Approximate computation, graphs and graphical computation, logarithms and logarithmic computation, areas and approximations of areas.

4. Elementary Mine Accounting Assistant Professor LAMBERT Three credits (three lectures per week); second semester. Required of first-year students, five-year E. M. and Met. E. Courses.

Elementary accounting in general, applications to mine accounts; primary records, labor, supply, mine and mill products, and fund sheets; secondary records, invoice, labor and supply, mine and mill cost sheets, trial balance, etc.

5. Algebra and Trigonometry

Mr. DAVIS

Six credits (six recitations per week); first semester. Required of freshmen.

Functions and functional notation, factors and roots of general quadratics, factor and remainder theorems, factors and values of functions, determinants, development of functions and undetermined coefficients, derived functions, theory of equations, permutations and combinations; trigonometric ratios, right triangles, general definitions of trigonometric functions, analytic relations, addition formulas, etc.

6. Trigonometry and Analytic Geometry Mr. DAVIS

Six credits (six recitations per week); second semester. Open to students completing Course 5. Required of freshmen.

Trigonometric equations, oblique triangles, spherical formulas and solution of spherical triangles; systems of co-ordinates, loci, straight line, transformations, equations of conics, properties of conics.

7. Analytic Geometry and Calculus Assistant Professor LAMBERT Five credits (five recitations per week); first semester. Open to students completing Course 6. Required of sophomores.

General equation of second degree, higher plane curves, co-ordinates in space, point, plane, straight line, quadric surfaces; nature of differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, elementary integration, expansion of functions, indeterminate forms, partial derivatives, change of variable.

8. Calculus

Assistant Professor LAMBERT

Three credits (three recitations per week); second semester. Open to students completing Course 7. Required of sophomores.

34

Applications continued, rational fractions, rationalization, formulas of reduction, multiple integration, various systems of co-ordinates, approximate integration, hyperbolic functions, some differential equations of mechanics; adjustments of observations.

9. Mechanics

Assistant Professor LAMBERT Five credits (five recitations per week); first semester. Open to students completing Course 8, and Physics 3. Required of juniors.

Statics and dynamics, rectilinear, circular, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy; elementary mechanics of materials,

10. Mechanics

Six credits (six recitations per week); second semester. Open to students completing Course 9. Required of juniors.

Mechanical and elastic properties of materials of construction; beams, shafts, columns, reinforced concrete, hollow cylinders and spheres, rollers, plates; theory of internal stress.

11. Mine Plant

Six credits (six lectures per week); first semester. Open to students taking Course 9. Required of juniors in E. M. and Met. E. Courses.

Discussion of the machinery and appurtenances employed in the equipment of mines. Hoisting, pumping, air compression, headframes, ore bins, etc.

Professor Comstock 13. Hydraulics and Water Power Five credits (five recitations and lectures per week); first semester.

Open to students completing Course 10. Required of seniors.

Laws of the equilibrium, pressure, and flow of liquids, estimation of power to be developed at a power site, dams and appendages, theory of water wheels and turbines, number and type of units to install, speed control, power house equipment, transmission.

15. Engineering Construction

Professor COMSTOCK and Assistant Professor LAMBERT Three credits (one lecture, four drafting hours per week); first semester. Open to students completing Course 10. Required of seniors in E. M. and Met. E. Courses.

Analytic and graphic resolution of stresses in framed structures, loads, stresses in mining structures, design of mining structures.

16. Mine Plant Design

Three credits (six drafting hours per week); second semester. Open to students completing Course 15. Required of seniors in E. M. Course.

A study of power possibilities, costs, etc., and design of a power plant, surface equipment, and structures in connection with thesis work.

18. Mill and Smelter Design

Three credits (six drafting hours per week); second semester. Open to students completing Course 15. Required of seniors in Met. E. Courses.

A study of the construction and mechanical equipment of mills and smelters in connection with thesis work.

METALLURGY

WILLIAM R. APPLEBY, M.A., Professor 114 Main Engineering Building PETER CHRISTIANSON, B.S., E.M., Professor

5 Main Engineering Building

LEVI B. PEASE, M.S., Professor

5 Main Engineering Building

35

Professor Comstock

Professor COMSTOCK

Assistant Professor LAMBERT

Professor COMSTOCK

5 Main Engineering Building

Ore Testing Works

SAMUEL L. HOYT, E.M., Assistant Professor

EDMUND NEWTON, E.M., Instructor

1. Assaying Professor APPLEBY and ASSISTANTS Eight credits (four lectures and eight laboratory hours per week); second semester. Open to students completing Mineralogy 1. Required of freshmen in E. M. and Met. E. Courses.

Determination of values of ores, metallurgical products and bullion.

2. General Metallurgy and Metallurgy of Iron

Professor CHRISTIANSON Three credits (three lectures per week); first semester. Open to students completing Course 1. Required of sophomores in E. M. and Met. E. Courses.

Including the subjects of combustion, fuels, refractory materials, and furnaces. Lectures and recitations on metallurgy of iron.

3. Metallurgy of Wrought Iron and Steel Professor CHRISTIANSON Three credits (three lectures per week); second semester. Open to students completing Course 2. Required of sophomores in E. M. and Met. E. Courses.

Consideration of the principles of manufacture, details of plant construction, and chemical and physical phenomena.

4. Metallurgy of the Base Metals Professor PEASE Four credits (four lectures per week); first semester. Open to students completing Course 3. Required of juniors in E. M. and Met. E. Courses.

Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining methods.

 Metallurgy of the Precious Metals Professor PEASE Four credits (four lectures per week); second semester. Open to students completing Course 4. Required of juniors in E. M. and Met. E. Courses.

Gold, silver, and platinum. Methods and principles of cyanidation, chlorination, amalgamation, and lixiviation as applied to the treatment of the above.

6. Ore Testing Professor APPLEBY and ASSISTANTS Six credits (two lectures and eight laboratory hours per week); first semester. Open to students completing Course 5 and Mining 7. Required of seniors in E. M. and Met. E. Courses.

Determination of methods of ore treatment, stamping, concentration, cyanidation, roasting, chlorination, lixivistion, and amalgamation.

7. Special Problems in Metallurgy Professor APPLEBY and ASSISTANTS Four credits (eight laboratory hours per week); first semester. Open

to students taking Course 6. Required of seniors in Met. E. Course. Research work preparatory to thesis.

8. Electro-Metallurgy

Professor Christianson

Three credits (three lectures per week); first semester. Open to students completing Course 5. Required of seniors in Met. E. Courses. A study of the reduction of ores, refining of metals and production of metals by electrolytic deposition; and the use of the electric furnace for smelting of ores, refining metals, and the manufacture of refractory alloys.

9. Metallography

Assistant Professor Hoyr

Four credits (two lectures, four laboratory hours per week); second semester. Open to students completing Course 3. Required of seniors in Met. E. Courses.

A study of the microstructure of metals and alloys as affected by heat and industrial treatments, together with the influence of changes of structure on their properties. Special attention is given to siderurgic products.

10. Field Work in Metallurgy Professor APPLEBY and ASSISTANTS Two credits (eight hours per day in field for seven days); June follow-

ing second semester. Open to students completing Course 5. Required of juniors.

Study of metallurgical operations at smelters and mills. Detailed report is required covering plants visited.

 Thesis and Specifications Professors APPLEBY and COMSTOCK Five credits (ten hours, conference and laboratory); second semester.
 Open to students completing Course 9. Required of seniors in Met. E.

Courses.

Detailed investigations of ore treatment, with report including designs and specifications for suitable plants.

MINING ENGINEERING

*CHARLES E. VAN BARNEVELD, B.A.Sc., E.M., Professor

3 Main Engineering Building

EDWARD P. MCCARTY, E.M., Professor

207 Main Engineering Building

MERTON S. KINGSTON, E.M., Assistant Professor 207 Main Engineering Building

ERVIN W. MCCULLOUGH, E.M., Instructor

3 Main Engineering Building

1. Mine Surveying

Professor McCARTY and Assistant Professor KINGSTON Six credits (three lectures per week); both semesters. Open to students completing Mathematics 6. Required of sophomores.

Computation, platting, and problems with special reference to mine surveying.

2. Mining Professor VAN BARNEVELD One credit (one lecture per week); second semester. Required of sophomores.

Explosives and blasting.

3. Field Work Professor VAN BARNEVELD and ASSISTANTS Eight credits (eight hours per day for seven weeks); second semester. Open to students completing Course 1. Required of sophomores.

Practice in general surveying during month of May. Practice in underground surveying during first two weeks of June. This work is given on the Iron Ranges.

*On leave of absence 1913-16.

4. Mining

Professor VAN BARNEVELD Five credits (five lectures per week); first semester. Open to students completing Course 2. Required of juniors.

Mode of occurrence of ore bodies; prospecting, drilling and blasting. Use of churn and diamond drill.

5. Mining

Professor VAN BARNEVELD Five credits (five lectures per week); second semester. Open to students completing Course 4. Required of juniors.

Professor McCarty

Professors VAN BARNEVELD and COMSTOCK

Shaft-sinking, tunneling, drifting, stoping, timbering.

6. Mining

Three credits (three lectures per week); second semester. Open to students completing Course 4 and Mechanics 11. Required of juniors.

Hoisting, pumping, ventilation, underground transportation. Mining machinery. Electricity applied to mining.

7. Ore Dressing

Five credits (five lectures per week); second semester. Open to students completing sophomore work. Required of juniors.

Mechanical preparation of ore for the markets, for metallurgical treatment, etc.

Assistant Professor KINGSTON 8. Mine Mapping Three credits (six drafting hours per week); second semester. Open

to students completing Course 3. Required of juniors.

Mine mapping in accordance with prevalent practice in the western mining districts. Ore and stripping estimates and mine maps based on Mesabe Range practice.

9. Practical Mining Professor VAN BARNEVELD and ASSISTANTS Eight credits (eight hours per day for ten weeks); summer vacation. Open to students completing Course 6. Required of juniors.

Study of mining operations. Mine plant and equipment and practical mining work; a mine to be selected by department during months of May, June, July, and August.

10. Mining and Mining Engineering Professor VAN BARNEVELD Five credits (five lectures per week); first semester. Open to stu-

dents completing Course 9. Required of seniors in E. M. Courses. Methods of metal mining. Quarrying. Methods of coal mining. Hydraulic mining.

11. Mining and Mining Engineering Professor VAN BARNEVELD Five credits (five lectures per week); second semester. Open to stu-

dents completing Course 10. Required of seniors in E. M. Courses.

Mine management, mine accounts, mining law, mining accidents, examination of a mining property, sampling ore reserves.

12. Designs and Specifications

Professor VAN BARNEVELD and COMSTOCK Four credits (eight drafting hours per week); second semester. Open only to seniors in regular standing. Required of seniors in E. M. Courses. Designs of mine cars, skips, head-frames, etc., in connection with thesis work.

13. Thesis

Professors VAN BARNEVELD and MCCARTY and Mr. MCCULLOUGH

Two and four credits (two and four-hour conferences); both semesters. Open only to seniors in regular standing. Required of seniors in E. M. Courses.

Conference with individual students. This work is based upon a review of the preceding technical work and field work.

PHYSICS

JOHN ZELENY, Ph.D., Professor 15 Physics Building JAMES COXE SANDERSON, Ph.D., Instructor 32 Physics Building

1. General Physics Professor JOHN ZELENY and Mr. SANDERSON Three credits (three hours per week); first semester. Open to students completing Mathematics 6. Required of sophomores.

Mechanics of solids and fluids, heat and sound. This is the first part of an elementary course in Physics, designed for those who do not intend to pursue the subject longer than one year. The course is experimental rather than mathematical and gives the student a general knowledge of the fundamental principles of the subject. There will be one experimental lecture and two recitations each week.

2. General Laboratory Practice Mr. SANDERSON One credit (two hours per week); first semester. Open to students taking Course 1. Required of sophomores.

Physical measurements in the mechanics of solids and fluids, and in heat and sound, giving the student a knowledge of experimental methods.

3. General Physics Professor JOHN ZELENY and Mr. SANDERSON Three credits (three hours per week); second semester. Open to students completing Course 1. Required of sophomores.

Light, electricity, and magnetism. This is the second part of the elementary course begun under Course 1. The treatment is experimental and the fundamental principles of the subjects, including those of radioactivity, ionization, X radiation, and the electrical constitution of matter, are discussed and illustrated. There will be one experimental lecture and two recitations each week.

4. General Laboratory Practice

Mr. SANDERSON

One credit (two hours per week); second semester. Open to students taking Course 3. Required of sophomores.

Physical measurements in light, electricity, and magnetism, giving the student a knowledge of experimental methods.

RHETORIC

JOSEPH M. THOMAS, Ph.D.,	Professor	. 3	10 Folwell Hall
WARREN T. POWELL, M.A.	, Instructor	4	10 Folwell Hall

Mr. Powell 15. Rhetoric and Composition Eight credits (four hours per week); both semesters. Required of all freshmen.

This course is planned with special reference to the needs of engineering students. Practical training in writing will be given, and in connection with the written work the student will be required to study the work of those writers who have handled scientific subjects with clearness and power.

To broaden the scope of the student's knowledge and interests a course of outside reading will also be required.

STUDENTS

SENIORS-11

Coady, Leo. J., Minneapolis Edwin, John, Minneapolis Ely, Robert H., Duluth Hammond, Arthur H., Minneapolis Hanson, J. Bernard, Minneapolis

Hondrum, Olaf, Bemidji Ladd, Greeley, Minneapolis Michie, Roy G., Montevideo Apolis Nissen, Arvid E., Minneapolis Ofsthun, Norman H., Glenwood Walker, Charles A., Brainerd

JUNIORS-7

Anderson, Arthur P., Minneapolis Bierman, Alfred C., Litchfield Eidemiller, Howard N., St. Paul

olis Larson, Ernest L., Akeley Potter, Orrin W., St. Paul ul Ravicz, Louis, Minneapolis Robertson, John H., St. Paul

SOPHOMORES-19

Buresch, Charles E., Lakefield Butler, W. Victor, Little Falls Christenson, Alfred, Madelia Clark, Malcolm W., Northfield Coller, Walter A., St. Paul Collins, Leon T., Pine Island Dopp, J. Lawrence, Ashland, Wis. Harmon, Sidney E., St. Paul Haugan, Albert C., Hanska Heilig, Louis S., Minneapolis Johnson, Fred C., Willmar Kerr, Charles D., St. Paul Lee, Oscar, St. Paul Neerland, Herman, Minneapolis Nord, Harry H., 'Ashland, Wis. Sanchez, Richard M., Tarma, Peru Stene, James, Minneapolis Urquhart, George K., St. Paul

Wade, Henry H., Hopkins

FRESHMEN-20

Abrahamson, Hjalmar, Wadena Aronson, Sam, St. Paul Capser, Leo W., St. Paul Craig, John J., Minneapolis Davies, Fred A., Minneapolis Dovre, Adolph, Sleepy Eye Ellis, George J., Minneapolis Evleth, Everett B., St. Paul Field, Reginald, Mobridge, S. D. Fields, Austin, St. Paul Hicks, John, Minneapolis Johnson, Samuel A., St. Charles Josephson, S. Sidney, Minneapolis Krogh, Alvin T., Minneapolis McDermid, Archibald J., Duluth McHardy, Roy H., Minneapolis Oglesby, Fred B., Valley City, N. D Ostrom, George E., Stillwater Roll, George H., Ellsworth Shapere, Abraham D., St. Paul

FIRST-YEAR CLASS-37

Anderson, Ray W., Cumberland, Wis. Benton, George B., Minneapolis Carter, Cuthbert, Minneapolis Copeland, William A., St. Paul Coryell, Lewis S., Osceola, Wis. Cutler, Fred A., Jr., Minneapolis Dunnell, Warren W., Minneapolis Dwyer, T. Thomas R., Minneapolis Elson, William H., St. Paul Evleth, Earl M., St. Paul Fearing, Edward J., Little Falls Feeley, Chester B., Minneapolis Frank, Harry, Minneapolis Hall, Frank E., Little Falls Jeffers, Roy L., Brainerd Johnson, Harry W., Minneapolis Kenkel, Herman H., St. Paul Levorsen, A. Irving, Fergus Falls McClure, Gilbert W., St. Paul Marr, Ralph C., Minneapolis Mattern, Joseph P., MinneapolisSimMunson, Elmer E., CokatoSoldMurray, Floyd, SpartaStr.O'Gorman, James F., St. PaulStr.Oswald, Henry A., MinneapolisSulRafferty, Frank L., WabashaTerReiter, Clarence J., RochesterWaShattuck, Warner A., Bisbee, Ariz.Wij

Sinclair, Gilbert, Minneapolis Solon, Lorin R., Minneapolis Strand, Edwin L., Two Harbors Strand, Harry W., Marine Mills Sullivan, Daniel C., Stillwater Tennesen, Edward, Minneapolis Wallace, Carleton, Minneapolis Wiggins, Porter, Minneapolis

Woodruff, John J., Minneapolis

THE LIBRARY OF THE FEB 26 1931

I'NP ENLYY HE DOL JUS,

.

M 6 6 4 Zmi 1914/15

The University of Minnesota

THE SCHOOL OF MINES

1914-1915

UNIVERSITY OF ILLINOIS

WILL ENGLEY OF PLEADING ANT-

JUN 181914

PRESIDENT'S OFFICE

BULLETIN OF THE UNIVERSITY OF MINNESOTA VOL. XVII, NO. 11. JUNE 1914

> Entered at the Post-Office in Minneapolis as second-class matter Minneapolis, Minn.

The Bulletin of the University of Minnesota is issued as often as twice a month during the University year.

The Bulletin comprises-

Original Series. Containing the reports of the President and of the Board of Regents, the Register, the Bulletin of General Information, the annual announcements of the individual colleges of the University, etc.

General Series. Containing announcements of departments of instruction, reports of University officers, etc.

These publications will be sent gratuitously to all persons who apply for them. The applicant should state specifically which announcement or what information is desired. Address

> The REGISTRAR, The University of Minnesota, Minneapolis, Minnesota.

Research Publications. Containing results of research work. Papers will be published as separate monographs numbered in several series.

School of Mines Experiment Station Series. Containing results of investigations conducted by the Station.

Current Topics Series. Containing papers of general interest in various lines of work.

These publications are free to residents of the State. To others a small charge is made. They are offered for exchange with institutions publishing similar material. Address

> The LIBRARIAN, The University of Minnesota, Minneapolis, Minnesota.

The University of Minnesota

THE SCHOOL OF MINES

1914-1915

BULLETIN OF THE UNIVERSITY OF MINNESOTA VOL. XVII, NO. 11. JUNE 1914

Entered at the Post-Office in Minneapolis as second-class matter Minneapolis, Minn.

1914	1915		
JULY	JANUARY	JULY	
Su Mo Tu W Th Fr Sa	Su Mo Tu W Th Fr Sa	Su Mo Tu W Th Fr Sa	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	31		
AUGUST	FEBRUARY	AUGUST	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
SEPTEMBER	MARCH	SEPTEMBER	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	<u></u>	31	
NOVEMBER	MAY	NOVEMBER	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
DECEMBER	JUNE	DECEMBER	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

UNIVERSITY CALENDAR 1914-1915

The University year covers a period of thirty-eight weeks, beginning on the second Tuesday in September. Commencement Day is always the second Thursday in June.

1914

September	1	Tuesday	Registration closes except for new students
September	1-8	Weck	Fees payable except for new students
September	7-15	Week	Supplementary entrance examina- tions, registration of new students, and payment of fees
September	9-15	Week	Military encampment of cadets
September	16	Wednesday	First semester begins
November	25	Wednesday	Thanksgiving recess begins 9:00 p.m.
November	30	Monday	Thanksgiving recess ends 8:00 a.m.
December 1915	18	Friday	Christmas vacation begins 9:00 p.m.
January	5	Tuesday	Christmas vacation ends 8:00 a.m.
January	19	Tuesday	Registration for second semester closes
January	25	Monday	Final examinations begin
January	26	Tuesday	Payment of fees for second semester closes
February	3	Wednesday	Second semester begins
February	11	Thursday	First semester class reports due
February	12	Friday	Lincoln's Birthday: a holiday
February	22	Monday	Washington's Birthday: a holiday
March	31	Wednesday	Easter recess begins 9:00 p.m.
April	8	Thursday	Easter recess ends 8:00 a.m.
May	29	Saturday	Final examinations begin
June	5	Saturday	Second semester closes
June	6	Sunday	Baccalaureate service
June	7	Monday	Senior class day exercises
June	9	Wednesday	Alumni Day
June	10	Thursday	Forty-third Annual Commencement
June	11	Friday	Summer vacation begins
June	14	Monday	Summer Session begins

The University year for 1915-16 will begin Tuesday, September 7.

Note.—During the year 1913-14 there were 101 recitation days the first semester and 98 the second, inclusive of the final examination periods. In 1914-15 the number of recitation days will be exactly the same.

SCHOOL OF MINES

Program of Supplementary Examinations

Tuesday,	Sept. 8	9-12 a.m.	Mechanics and Mathematics
		2-5 p.m.	Mining Engineering Subjects
Wednesday,	Sept. 9	9-12 a.m.	Chemistry
		2-5 p.m.	Drawing and Descriptive Geometry
		2-5 p.m.	Mechanical Engineering Subjects
Thu r sday,	Sept. 10	9-12 a.m.	Metallurgical Subjects
		2-5 p.m.	Physics
Friday,	Sept. 11	9-12 a.m.	Electrical Engineering Subjects
		2-5 p.m.	Geology and Mineralogy

THE SCHOOL OF MINES

FACULTY

GEORGE EDGAR VINCENT, Ph.D., LL.D., President 1005 5th St. S. E. CYRUS NORTHROP, LL.D., President, Emeritus 519 10th Ave. S. E. WILLIAM R. APPLEBY, M.A., Dean and Professor of Metallurgy 928 5th St. S. E. CHARLES M. ANDRIST, M.L., Professor of French 706 Delaware St. S. E. *CHARLES E. VAN BARNEVELD, B.A.Sc., E.M., Professor of Mining Engineering OSCAR C. BURKHARD, M.A., Assistant Professor of German 719 E. River Road PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy 217 Union St. S. E. ELTING H. COMSTOCK, M.S., Professor of Mechanics and Mathematics 1416 7th St. S. E. WILLIAM H. EMMONS, Ph.D., Professor of Mineralogy and Geology 719 7th St. S. E. HENRY A. ERIKSON, Ph.D., Assistant Professor of Physics 424 Harvard St. S. E. [†]JOHN J. FLATHER, Ph.B., M.M.E., Professor of Mechanical Engineering 315 11th Ave. S. E. GEORGE B. FRANKFORTER, Ph.D., Professor of Chemistry 525 E. River Road FRANCIS C. FRARY, Ph.D., Assistant Professor of Chemistry 305 Walnut St. S. E. JULES T. FRELIN, B.A., Assistant Professor of Romance Languages 112 Church St. S. E. FRANK F. GROUT, M.S., Assistant Professor of Geology and Mineralogy 623 13th Ave. S. E. SAMUEL L. HOYT, E.M., Ph.D., Assistant Professor of Metallurgy 715 University Ave. S. E. WILLIAM H. KAVANAUGH, M.E., Professor of Experimental Engineering 124 State St. S. E. WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive Geometry 722 10th Ave. S. E. EDWIN M. LAMBERT, M.E., Assistant Professor of Mechanics and Mathematics 1086 12th Ave. S. E. EDWARD P. MCCARTY, E.M., Professor of Mining 112 Church St. S. E. WALTER R. MYERS, Ph.D., Assistant Professor of German EVERETT W. OLMSTED, Ph.D., Professor of Romance Languages LEVI B. PEASE, M.S., Professor of Metallurgy 1070 16th Ave. S. E. *On leave of absence 1913-16.

†On leave of absence 1914-15.

FACULTY

WILLIAM T. RYAN, E.E., Assistant Professor of	
CARL SCHLENKER, B.A., Professor of German	3228 4th St. S. E.
GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Profess	
neering	717 E. River Road
S. CARL SHIPLEY, B.S., M. E., Assistant Professor of	
	1517 E. River Road
CHARLES F. SHOOP, B.S., Assistant Professor of Exp	
	108 Beacon St. S. E.
CHARLES F. SIDENER, B.S., Professor of Chemistry	1320 5th St. S. E.
*JOSEPH M. THOMAS, Ph.D., Professor of Rhetoric	623 14th Ave. S. E.
GEORGE J. YOUNG, B.S., Professor of Mining Engine	ering 719 7th St. S. E.
	613 Fulton St. S. E.
*JOHN ZELENY, Ph.D., Professor of Physics	712 10th Ave. S. E.
LILLIAN COHEN, Ph.D., Instructor in Chemistry	415 E. 14th St.
EDWARD W. DAVIS, B.S., Instructor in Mechanics	
LDWARD W. DAVIS, D.S., Instructor in Mechanics	
	112 Church St. S. E.
ROBERT W. FRENCH, B.S., Instructor in Drawing	1018 16th Ave. S. E.
J. THEODORE GEISSENDOERFER, Ph.D., Instructor in G	
	967 14th Ave. S. E.
A. WALFRED JOHNSTON, M.A., Instructor in Geology	
PAUL E. KLOPSTEG, M.A., Instructor in Physics	
ERVIN W. McCullough, E.M., Instructor in Mining	
FRANKLIN R. MCMILLAN, C.E., Instructor in Exp	erimental Engineering
	321 Oak St. S. E.
JOHN J. MURPHY, C.E., Instructor in Mining 617	University Ave. S. E.
EDMUND NEWTON, E.M., Instructor in Metallurgy	1034 14th Ave. S. E.
PETER E. PETERSON, Instructor in Foundry Practice	3709 Clinton Ave.
EARL PETTIJOHN, M.S., Instructor in Chemistry	
2282	Carter Ave., St. Paul
Edward P. Quigley, Instructor in Forge Work	2923 Chicago Ave.
WILLIAM H. RICHARDS, Instructor in Carpentry	1423 W. 27th St.
FRANK B. ROWLEY, B.S., M.E., Instructor in Drav	
	217 Beacon St. S. E.
FRANK B. RUSSELL, M.A., Instructor in Rhetoric	
JAMES C. SANDERSON, Ph.D., Instructor in Physics	1307 6th St. S. E.
E. H. SIRICH, Ph.D., Instructor in French	
EDGAR K. SOPER, B.A., Instructor in Economic Geolo	gy 417 Union St. S. E.
WOLDEMAR M. STERNBERG, B.S.Chem., Instructor in	
	University Ave. S. E.
HERBERT K. STONE, M.A., Instructor in French	Oniversity rive. D. D.
STERLING TEMPLE, M.A., Instructor in Chemistry 1	758 Blair St St Paul
Howard T. VIETS, M.A., Instructor in Rhetoric	750 Dian St., St. Laur
	200
RICHARD WISCHKAEMPER, M.A., Instructor in Ger	504 Beacon St. S. E.
HOMER A. DESMARAIS, B.A., Assistant in French	JU4 Deacon St. S. E.
HOMER A. DESMARAIS, B.A., Assistant in French	

*On leave of absence 1914-15.

SPECIAL INFORMATION

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of Engineer of Mines (E.M.), Engineer of Mines in Geology [E.M. (Geology)], and Metallurgical Engineer (Met.E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four or five years, and vice versa, provided such candidate completes an additional year's work at the School and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and the Mechanic Arts, and in the School of Analytical and Applied Chemistry, who contemplate taking a degree in this School after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thorough courses in Mechanics, Mathematics, Physics, and Chemistry.

(a) Geology—to determine the location of the ore. (b) Mineralogy—to determine its nature. (c) Assaying—to determine if it has value for treatment. (d) Mining Engineering—to furnish material for treatment.
(e) Ore Testing—to determine best methods of treatment. (f) Ore Dressing—furnishing products for metallurgical treatment. (g) Metallurgy —smelting and refining ores and ore dressing products; reduction to metals.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

GRADUATION

Students completing courses of study to the satisfaction of the Faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examinations in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least one full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the Faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examinations held at the end of the second semester. Irregular attendance will debar a student from entering all final examinations.

THESES

The thesis work is intended to bring in review and connect the work in Mining and Metallurgy, Geology and Mineralogy, Mechanical and Electrical Engineering, Mathematics and Mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology, for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem, for candidates for the degree of Metallurgical Engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

Prior to the reopening of Field Work at the School of Mines, Tuesday, September 8, 1914, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on the project must be under way by December 1. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the School.

SPECIAL NOTES

Students failing to receive a semester mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the Registrar his yearly average in all subjects and present himself for supplementary examinations, according to the program given on page 4.

No other supplementary examination will be given. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures. * Students failing to receive a semester mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The Faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

All students who voluntarily register for Military Drill shall be required to drill the entire year and be subject to the same rules and regulations as other cadets. Such students must receive credit or honorable dismissal from the department before graduating.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination at the end of the first or second semester will be given zero on the examinations.

Students whose absences in either semester exceed four weeks in the aggregate are not permitted to take examinations without special permission of the Faculty.

A fee of five dollars a subject is required for each special examination.

ADMISSION, REGISTRATION, FEES

For statements concerning requirements for admission, registration, and fees, consult Bulletin of General Information.

9

COURSES IN MINING ENGINEERING

COURSES LEADING TO THE DEGREE OF E.M.

FIRST YEAR-FIVE-YEAR COURSES

First Semester

Chemistry 1*. General, 6†

Mathematics 1, Algebra, 4

Mathematics 3, Computation and Mensuration, 3

Mechanical Engineering 4a, Foundry Practice, 6

Rhetoric 3. 3

Spanish 31, Beginning, 3

Second Semester

Chemistry 2, General, 6, Chem. 1 Mathematics 2, Solid Geometry and Mensuration, 3 Mathematics 4, Mine Accounting, 6 Mechanical Engineering 3a, Blacksmithing, 6 (9 weeks) Mechanical Engineering 1a, Carpentry, 6 (9 weeks)

Rhetoric 4, 3, Rhet, 3

Spanish 32, Beginning, 3, Spanish 31

FRESHMAN YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Chemistry 5, General and Analytical, 5

Drawing 11, Engineering Drawing, 10

Mathematics 5, Algebra and Trigonometry, 6, Math. 1, 2

Mineralogy 23, Elements of Mineralogy, 8

Second Semester

Chemistry 6. General and Analytical, 7. Chem. 5

Drawing 12, Engineering Drawing, 8, Draw. 11

Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5

Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23

Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23

SOPHOMORE YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Chemistry 101, Quantitative Analysis, 7, Chem. 5, 6

Drawing 13, Descriptive Geometry, 2, Draw, 12, Math. 6

Mathematics 7, Calculus, 5, Math. 6

Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2

Mining 1, Mine Surveying, 3, Math. 6

Physics 1, General, 3, Math. 6

^{*}Odd numbers indicate first-semester courses; even numbers, second-semester courses. A combination of the two (e. g., 5-6) indicates courses continuing through the year. In the case of courses repeated the second semester, the suffix *a* indicates first semester; the suffix *b*, second semester. \dagger Figure following the descriptive name of a course indicates number of hours a week. Course names following indicate prerequisite courses.

Physics 3, General Laboratory Practice, 2, with Physics 1

Second Semester

Chemistry 102, Quantitative Analysis, 7, Chem. 101

Drawing 14, Drafting, 4, Draw. 13

Geology 1b, General Geology, 3, Mineral. 24

Geology 105b, Elements of Rock Study, 4, Mineral. 24

Mathematics 8, Calculus, 3, Math. 7

Metallurgy 4, Wrought Iron and Steel, 3, Met. 3

Mining 2, Mine Surveying, 3, Min. 1

Mining 6, 1

Physics 2, General, 3, Physics 1

Physics 4, General Laboratory Practice, 2, with Physics 2

Field Work. Months of May, June, July, and August Mining 2f, Surveying, Min. 2, beginning about May 1 Geology 1f, Geol. 1b, 105b, beginning about June 15 Underground Mining Work, beginning about July 1

JUNIOR YEAR—FOUR- AND FIVE-YEAR COURSES First Semester

Experimental Engineering 21, Steam Laboratory, 4, with Math. 11 Geology 73, Historical and Economic Geology, 3, Geol. 105b, 1b Mechanics 9, 5, Math. 8

Mechanics 11, Mine Plant, 6, Math. 8

Metallurgy 105, Base Metals, 4, Met. 4

Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Math. 10 Geology 106, Petrology, 4, Geol. 105b

Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 3, Mech. 11

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 10, 5, Min. 9

Mining 8, Ore Dressing, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15

Underground Mining Work, beginning about June 1

SENIOR YEAR—FOUR- AND FIVE-YEAR COURSES First Semester

Chemistry 103, Iron and Steel Analysis, 7, Chem. 102 Electrical Engineering 53, Electric Power, 5, Physics 3, 4 Geology 111, Ore Deposits, 4, Geol. 106

Mechanics 13, Water Power, 5, Mech. 10

Mechanics 15, Engineering Construction, 5, Mech. 10

Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8

Mining 11, 5, Min. 10 Mining 13, Thesis, 2, Min. 10f

Second Semester

Chemistry 104, Ore and Slag Analysis, 7, Chem. 103 Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Geology 112, Problems in Ore Deposits, 4, Geol. 111 Mcchanics 16, Mine Plant Design, 10, Mech. 15 Mining 12, 5, Min. 11 Mining 14, Thesis, 8, Min. 13

COURSES LEADING TO THE DEGREE OF E.M. (GEOLOGY)

FIRST YEAR

First Semester

Chemistry 1, General, 6 Drawing 11, Engineering Drawing, 10 French 1 or 3, 3, French 2 for 3 or German 15 or 17, 3, German 16 for 17 Mathematics 1, Algebra, 4

Rhetoric 3, 3

Second Semester

Chemistry 2, General, 6

Drawing 12, Engineering Drawing, 8, Draw, 11

French 2 or 4, 3, French 1 or 3

or

German 16 or 18, 3, German 15 or 17

Mathematics 2, Solid Geometry and Mensuration, 3 Rhetoric 4, 3, Rhet. 3

FRESHMAN YEAR

First Semester

Chemistry 5, General and Analytical, 5 French 3 or 5, 3, French 2 or 4 or German 17 or 23, 3, German 16 or 18 Mathematics 5, Algebra and Trigonometry, 6, Math. 1, 2 Mineralogy 23, Elements of Mineralogy, 8

Second Semester

Chemistry 6, General and Analytical, 7
French 4 or 6, 3, French 3 or 5 or
German 18 or 24, 3, German 17 or 23
Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5
Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23
Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23

12

SOPHOMORE YEAR

First Semester

Chemistry 101, Quantitative Analysis, 7, Chem. 5, 6

Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6

Mathematics 7, Calculus, 5, Math. 6

Mineralogy (Advanced), 3

Mining 1, Mine Surveying, 3, Math. 6

Physics 1, General, 3, Math. 6

Physics 3, General Laboratory Practice, 2, with Physics 1

Second Semester

Chemistry 102, Quantitative Analysis, 8, Chem. 5, 6

Drawing 14, Drafting, 4, Draw. 13

Geology 1b, General Geology, 3, Mineral. 24

Geology 105b, Elements of Rock Study, 4, Mineral. 24

Mathematics 8, Calculus, 3, Math. 7

Metallurgy 8, 3, Met. 2

Mining 2, Mine Surveying, 3, Min. 1

Mining 6, 1

Physics 2, General, 3, Physics 1

Physics 4, General Laboratory Practice, 2, with Physics 2

Field Work. Months of May, June, July, and August Mining 2f, Min. 2, Surveying, beginning about May 1 Geology 1f, Geol. 1b, 105b, beginning about June 15 Special Geological Field Work, beginning about July 1

JUNIOR YEAR

First Semester

Geology 73, Historical and Economic Geology, 3, Geol. 105b, 1b Mechanics 9, 5, Math. 8 Mining 9, 5, Min. 6

Geology 11, Paleontology, 9, with Geol. 73

Electives, 10

Second Semester

Geology 106, Petrology, 4, Geol. 105b

Mechanics 10, 6, Mech. 9

Mining 10, 5, Min. 9

Mining 8, Ore Dressing, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Geology 124, Structural and Metamorphic, 3, Geol. 73, 105b

Electives, 5

 Field Work. Months of May, June, July, and August Mining 10f, beginning about May 15 Underground Mining Work, beginning about June 1 Practical Geology 160, beginning about July 1

SCHOOL OF MINES

SENIOR YEAR

First Semester

Geology 111, Ore Deposits, 4, Geol. 106 Geology 247, Geology of Lake Superior District, 5, with Geol. 111 Elective, 5 Mechanics 13, Water Power, 5, Mech. 10 Mining 11, 5, Min. 10 Thesis, 10

Second Semester

Geology 112, Problems in Ore Deposits, 4, Geol. 111 Geology 214, Seminar in Ore Deposits, 3, Geol. 111 Geology 114, Geology of Western Mining Districts, 5, Geol. 111 Mining 12, 5, Min. 11 Electives, 5 Thesis, 10

DEPARTMENT OF MINING ENGINEERING

Mining Engineering extends through the sophomore, junior, and senior years. The subjects given, together with the sequence necessary, are treated in the accompanying outline of the course.

In the senior year, problems in hoisting, hauling, pumping, ventilation, and similar subjects become an important part of the work.

MINE SURVEYING

The work in surveying is given in the sophomore year and is designed solely for mining engineers. The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabi or Vermilion Range. The exact location will be announced in March of each year.

The students will be divided into squads of two to four. Each squad must provide itself with a 6-foot steel tape graduated to hundredths. The duration of the course will be seven weeks ($5\frac{1}{2}$ days of 8 hours each constitute a week). Each student will be required to complete satisfactorily the following exercises and surveys:

1. Chaining and taping

2. Compass work

- 3. Adjustment and use of wye and dumpy levels
- 4. Adjustment of mining transit
- 5. Reading angles
- 6. Traverse with transit and steel tape
- 7. Azimuth traverse with stadia

8. Determination of meridian, latitude, and time by solar and stellar observations

9. Survey of mining claim according to the regulations of the U. S. Government

10. Measurement of earthwork

11. Laying out railroad tangents, curves, and crossings

12. Exercises in plane table work and geological surveying

13. The survey of a mine

A full equipment of surveying instruments of the latest and best makes is furnished to each squad for this work.

This is followed by a course in Mine Mapping during the second semester of junior year.

Students who furnish satisfactory evidence of proficiency in this work may be given credit therefor. The department, however, reserves the right in any case to require such students to take a theoretical or a practical examination or both.

FIELD WORK IN MINING Sobhomore Year

After the close of the field work in Geology (last two weeks in June), members of the sophomore class are required to engage for six weeks in underground mining work on the Minnesota or Michigan iron ranges, for which they may receive wages.

Junior Year

Upon termination of the junior field work in Metallurgy (about May 15), the members of the junior class, who are candidates for the degree of Engineer of Mines, are required to devote two weeks to the study of mine plant and mine operation under the direction of the department. This work will be given in one of the leading western metal mining districts, exact location to be announced in April of each year. Thereafter, during the months of June, July, and August, the student is required to spend at least six weeks in actual underground mining work in the West, for which he may receive wages. The department will render all possible assistance in locating students in the camps of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must in person submit this diary to the department on the date of the reopening of field work. In judging the character of the student's field work, equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 8, 1914. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering Field Work in Mining and Metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: Metallurgy, September 8-15, inclusive; Mining, September 16-28.

On September 28 all seniors who expect to graduate must register

for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn to scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before September 28. These reports shall become the property of the School.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reason, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

ORE DRESSING

The lectures and recitations in Ore Dressing extend through the second semester of the junior year, and comprise the detailed study of ore dressing and concentrating machinery, together with the study of typical combinations of dressing machines as found in the several mining districts of the United States. In connection with the theoretical work, the ore dressing and testing plant of the School is utilized for practical illustrations.

COURSES IN METALLURGY

COURSES LEADING TO THE DEGREE OF MET. E.

FIRST YEAR-FIVE-YEAR COURSES

First Semester

Chemistry 1, General, 6

Mathematics 1, Algebra, 4

Mathematics 3, Computation and Mensuration, 3

Mechanical Engineering 4a, Foundry Practice, 6

Rhetoric 3, 3

Spanish 31, Beginning, 3

Second Semester

Chemistry 2, General, 6, Chem. 1 Mathematics 2, Solid Geometry and Mensuration, 3 Mathematics 4, Mine Accounting, 6 Mechanical Engineering 3a, Blacksmithing, 6 (9 weeks) Mechanical Engineering 1a, Carpentry, 6 (9 weeks) Rhetoric 4, 3, Rhet. 3 Spanish 32, Beginning, 3, Spanish 31

FRESHMAN YEAR—FOUR- AND FIVE-YEAR COURSES First Semester

Chemistry 5, General and Analytical, 5 Drawing 11, Engineering Drawing, 10 Mathematics 5, Algebra and Trigonometry, 6, Math. 1, 2 Mineralogy 23, Elements of Mineralogy, 8

Second Semester

Chemistry 6, General and Analytical, 7 Drawing 12, Engineering Drawing, 8, Draw. 11

Mathematics 6. Trigonometry and Analytical Geometry, 6. Math. 5

Mathematics o, Ingonometry and Analytical Geometry, o, Math.

Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23

Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23

SOPHOMORE YEAR-FOUR- AND FIVE-YEAR COURSES

First Semester

Chemistry 101, Quantitative Analysis, 7, Chem. 5, 6

Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6

Mathematics 7, Calculus, 5, Math. 6

Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2

Mining 1, Mine Surveying, 3, Math. 6

Physics 1, General, 3, Math. 6

Physics 3, Laboratory Practice, 2, with Physics 1

Second Semester

Chemistry 102, Quantitative Analysis, 7, Chem. 101

- Drawing 14, Drafting, 4, Draw. 13
- Geology 1b, General Geology, 3, Mineral. 24

Geology 105b, Elements of Rock Study, 4, Mineral. 24

Mathematics 8, Calculus, 3, Math. 7

Metallurgy 4, Wrought Iron and Steel, 3, Met. 3

- Mining 2, Mine Surveying, 3, Min. 1
- Mining 6, 1

Physics 2, General, 3, Physics 1

Physics 4, General Laboratory Practice, 2, with Physics 2

Field Work. Months of May, June, July, and August Mining 2f, Min. 2, Surveying, beginning about May 1 Geology 1f, Geol. 1b, 105b, beginning about June 15 Underground Mining Work, beginning about July 1

JUNIOR YEAR—FOUR- AND FIVE-YEAR COURSES First Semester

Experimental Engineering 21, Steam Laboratory, 4, with Math. 11

Geology 73, Historical and Economic Geology, 3, Geol. 105b, 1b Mechanics 9, 5, Math. 8

Mechanics 11, Mine Plant, 6, Math. 8

Metallurgy 105, Base Metals, 4, Met. 4

Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Math. 10

- Geology 106, Petrology, 4, Geol. 105b
- Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 3, Mech. 11

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 10, 5, Min. 9

Mining 8, Ore Dressing, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1
Mining 10f, beginning about May 15
Smelter Work, beginning about June 1

SENIOR YEAR—FOUR- AND FIVE-YEAR COURSES First Semester

Chemistry 103, Iron and Steel Analysis, 7, Chem. 102

Electrical Engineering 53, Electric Power, 5, Physics 3, 4

Mechanics 13, Water Power, 5, Mech. 10

Mechanics 15, Engineering Construction, 5, Mech. 10

Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8

Metallurgy 11, Special Problems, 8, Met. 106, Min. 8

Metallurgy 109, Electrometallurgy, 3, Met. 106

Second Semester

Chemistry 144, Electrochemistry, 5, Chem. 102

Chemistry 104, Ore and Slag Analysis, 7, Chem. 103 Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Mechanics 18, Mill and Smelter Design, 6, Mech. 15 Metallurgy 152, Metallography, 6, Met. 106 Metallurgy 12, Thesis, 10, Met. 11

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use. The practical work consists in visits to smelting and refining works which are accessible. The work in Metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags are shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their reports in detail. This work is offered to students completing the necessary courses in Mineralogy and Chemistry.

ORE TESTING

The lectures treat of the use and purposes of all the machinery connected with the subject, supplemented by detailed drawings. There are complete testing works connected with the department where the student may see the working of, and handle for himself, crushers, rolls, Huntington mill, concentrating machinery, such as vanners, buddles, jigs, pan for amalgamation, settlers, reverberatory furnaces for oxidizing and oxidizingchloridizing roasts, leaching and chlorination plants, as well as sizing apparatus and hydraulic separators. Sufficiently large amounts of ore are given to make the necessary tests upon the different machines and the students report the best method of treatment. The first semester of the senior year is devoted to instruction and laboratory work, and is required of students both in Mining and Metallurgy.

The ore-testing works meet educational, as well as commercial, needs.

Educational.—The ore-testing plant acquaints the student with the construction and manipulation of the principal typical machines used in the leading ore-dressing establishments of the country. It is here that students in Mining and Metallurgical Engineering get the requisite practical experience. They handle all machines and operate on sufficiently large amounts of material to determine the methods best suited to a given ore to extract the largest amount of metal with the least possible loss.

Commercial.—Ore-testing works are an important factor in mining and metallurgical projects. The commercial object is to determine the best method of treating a given ore so as to yield the largest percentage of the metal it contains at the least possible cost. Samples varying from 500 pounds to car-load lots can be treated by various methods.

As the funds appropriated for the erection of such a plant were sufficient to purchase only the necessary machinery, the business men of Minneapolis generously provided a suitable building. This building, 94 by 66 feet, is built of brick and stone.

Machinery .- The plant contains all the machinery necessary to illustrate the various processes of ore testing, viz., a Bridgman mechanical sampler, size B; a link belt bucket elevator; a pulley feeder complete; a pair of 121/2 by 12 geared rolls complete; a four compartment spitzkasten; a three compartment Hartz jig; a Collum jig complete with cone for driving; a three and a half foot Huntington mill complete; a three-stamp mill, 275-pound stamps; a five-stamp mill, 850-pound stamps; a Challenge automatic feeder for five-stamp battery; a suspended Challenge feeder for three-stamp battery; a Tulloch feeder for Huntington mill; a single deck buddle, twelve feet in diameter; a four-foot plain belt Frue vanner; a Cammett concentrator; a Hooper pneumatic concentrator; a Century drop motion jig; a three-foot amalgamating pan; a five-foot settler; a Bruckner roasting furnace, with fire box on wheels; a chlorination barrel; a battery tightener; a two-horse-power vertical boiler; a steam drying pan; three trommels, with driving arrangement and gears; a one-thousand pound Reedy elevator, complete with worm gear; two overhead crawls, each with eighty-foot track; one-ton pulley block; a quarter-ton pulley block; a scoop car, with flat wheels; two twenty-horse-power electric motors; three MacDermott automatic samplers, etc.

FIELD WORK IN METALLURGY

At the end of the junior year opportunity is given the student to study metallurgical operations at one or more smelting works. This work will begin about May 1. Not over two weeks' time will be devoted to this work.

Upon termination of the junior field work in Metallurgy and two weeks in Mining (not later than June 1), the members of the junior class who are candidates for the degree of Metallurgical Engineer, are required to spend at least six weeks in practical work in one or more of the smelters of the West, for which he may receive wages. The department will render all possible assistance in locating students in the camps of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must, in person, submit this diary to the department on date of reopening of field work. In judging the character of the student's field work equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 8, 1914. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering field work in Metallurgy and Mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: Metallurgy, September 8-15, inclusive; Mining, September 16-28.

On September 28 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn to scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before September 28. These reports shall become the property of the School.

METALLOGRAPHY

Courses in Metallography are offered to seniors who are candidates for the degree of Metallurgical Engineer, students in the Colleges of Science, Literature, and the Arts, Engineering, Chemistry, and the Graduate School.

These courses deal with the microscopic examination of metals, alloys, and ores. The lectures treat of and describe the apparatus used in connection with this subject, the methods of preparing specimens, the physical, chemical, and metallurgical principles involved, and the interpretation of the results of microscopic examination. A collection of specimens, microphotographs, and lantern slides covering wrought iron, low carbon, structural, rail, and tool steels, brasses, bronzes, and other industrial alloys are available for study and comparison. The laboratory course includes the microscopic and pyrometric study of metals, alloys, and ores. The laboratory is equipped with microscopes, electric and portable gas furnaces, and pyrometers of the latest and improved types. A special dark room is available for the preparation of microphotographs.

DEPARTMENTAL STATEMENTS

CHEMISTRY

Professors George B. Frankforter, Charles F. Sidener; Assistant Professor Francis C. Frany; Instructors Lillian Cohen, Earl Pettijohn, Woldemar M. Sternberg, Sterling Temple.

COURSES						
No.	Title	Lect. or rec. hrs.		Required of	Prereq. courses	
1.	General Chemistry		6	1st-yr. 5-yr. courses		
2.	General Chemistry		6	1st-yr. 5-yr. courses	1	
5.	Gen. & Anal. Chemistry	3	2	All Fr.		
6.	Gen. & Anal. Chemistry	1	6	All Fr.	5	
101.	Quantitative Analysis	1	б	All Soph.	6	
102.	Quantitative Analysis	1	6	All Soph.	101	
103.	Iron & Steel Analysis	1	б	Sr. E. M. & Met. E.	102	
104.	Ore & Slag Analysis	1	6	Sr. E. M. & Met. E.	103	
144.	Electrochemistry	1	4	Sr. Met. E.	102	

- 1-2. GENERAL CHEMISTRY. The course includes a study of the metallic and non-metallic elements, with a brief introduction to organic chemistry. FRANKFORTER, COHEN, and Assistants.
- 5-6. GENERAL AND ANALYTICAL CHEMISTRY. An introduction to descriptive, physical, and metallurgical chemistry and qualitative analysis. FRANKFORTER, TEMPLE, and Assistants.
- 101-102. QUANTITATIVE ANALYSIS. The course includes a general discussion of quantitative methods, with laboratory work in gravimetric analysis, first semester, followed by a discussion of standard solutions and the necessary stoichiometric calculations with laboratory work in volumetric analysis, second semester. SIDENER, PETTIJOHN, STERNBERG, and Assistants.
- 103. IRON AND STEEL ANALYSIS. Includes technical methods for the determination of the common constituents of iron ores, iron, and steel, with training in rapid work. SIDENER, PETTIJOHN, and STERNBERG.
- 104. ORE AND SLAG ANALYSIS. Rapid technical method for the determination of certain constituents in ores and slags. SIDENER, PETTIJOHN, and STERNBERG.
- 144. ELECTROCHEMISTRY. A discussion of electro-analytical methods and industrial electrochemical processes, and their underlying principles. FRARY.

DRAWING AND DESCRIPTIVE GEOMETRY

Professor William H. Kirchner; Instructors Robert W. French, Frank B. Rowley.

			COUF	RSES	
		Lect. or	Lab.		Prereq.
No.	Title	rec. hrs.	hrs.	Required of	courses
11.	Engineering Drawing		10	1st-yr. E. M. (Geol.) &	
				Fr. E. M. & Met. E	

EXPERIMENTAL ENGINEERING

No.	Title	Lect. or rec. hrs.	hrs.	Required of	Prereq. courses
12.	Engineering Drawing		8	1st-yr. E. M. (Geol.) &	
				Fr. E. M. & Met. E.	11
13.	Descriptive Geometry	2		All Soph.	12, Math. 6
14.	Drafting		4	All Soph.	13

- 11. ENGINEERING DRAWING. Sketching, lettering, representation, parallel and radial projection, elements of engineering, representation of details of machines and structures, interpretation of working drawings. KIRCHNER, FRENCH.
- 12. ENGINEERING DRAWING. Continuation of Course 11 as outlined above. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. Maps and sketches. Brush and pen conventions. RowLey, FRENCH.
- 13. DESCRIPTIVE GEOMETRY. Projection: central and special cases, principles and applications, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems. KIRCHNER.
- 14. DRAFTING. Graphics, machine drafting, and structural drafting. In struction in drafting room methods. FRENCH.

ELECTRICAL ENGINEERING.

Professor George D. SHEPARDSON; Assistant Professor William T. RYAN.

			COUF	RSES	
		Lect. or	Lab.		Prereq.
No.	Title	rec. hrs.	hrs.	Required of	courses
53.	Electric Power	1	4	Sr. E. M. & Met. E.	Physics 3, 4

53. ELECTRIC POWER. Elements of theory and practice of electrical measurements, wiring, dynamos, motors, and electric lighting. RYAN.

EXPERIMENTAL ENGINEERING

Professor William H. Kavanaugh; Assistant Professor Charles F. Shoop; Instructor Franklin R. McMillan.

	COURSES						
No.	Title	Lect. or rec. hrs.			Prereq. courses		
21.	Steam Laboratory		4	Jr. E. M. & Met. E.	With Math. 11		
22.	Strength of Materials		4	Jr. E. M. & Met. E	With Math. 10		
24.	Experimental Laboratory		4	Sr. E. M. & Met. E.	21		

- 21. STEAM LARORATORY. Exercises in valve setting, indicator practice, calibration of steam gauges, efficiency of screws and hoists. Shoop.
- 22. STRENGTH OF MATERIALS. Laboratory work, investigating the strength and physical qualities of iron, steel, brass, copper, belting, chains, beams, brick, and stone. MCMILLAN.

SCHOOL OF MINES

24. EXPERIMENTAL LABORATORY. Hydraulic measurements. Calibration of weirs, nozzles, meters, and other hydraulic apparatus, calorimetry; tests of pumps, engines, and boilers. KAVANAUGH.

GEOLOGY AND MINERALOGY

Professor William H. Emmons; Assistant Professor Frank F. Grout; Instructors A. Walfred Johnston, Edgar K. Soper.

COURSES						
No.		Lect. or rec. hrs.		Required of	Prereq. courses	
1b.	General Geology	3		All Soph.	24	
1f.	Field Work		2 wks.	All Soph.	1b & 105b	
11.	Paleontology	3	6	Jr. E. M. (Geol.)	With 73	
23.	Elements of Mineralogy	4	4	All Fr.		
24.	Descriptive Mineralogy	2	2	All Fr.	23-	
73.	Histor. & Econ. Geology.	3		All Jr.	1b & 105b	
105b.	Elements of Rock Study		4	All Soph.	24	
106.	Petrology		4	All Jr.	105b	
111.	Ore Deposits	4		Sr. E. M. & E. M. (Geol.)	106	
112.	Problems in Ore Deposits.		4	Sr. E. M. & E. M. (Geol.)	111	
114.	Geol. Western Mining Dis	ts	5	Sr. E. M. (Geol.)	111	
115.	Advanced Petrology		4	Elective	111	
124.	Struct. & Metamorph. Ge	ol. 3		Jr. E. M. (Geol.)	73 & 105b	
138.	Testing Econ. Minerals		4	Elective	24 & 73	
144.	Construction & Interpret	ta-				
	tion of Geologic Maps		4	Elective	73	
160.	Field Geology		6 wks	Jr. E. M. (Geol.)	106	
214.	Seminar in Ore Deposits	3		Sr. E. M. (Geol.)	111	
247.	Geol. & Exploration of La	ke				
	Superior Region		• •	Sr. E. M. (Geol.)	With 111	

- 1b. GENERAL GEOLOGY. A synoptical treatment of materials of the earth and of geologic processes. Physiographic, dynamic, and structural geology, with a brief introduction to Historical Geology. JOHNSTON.
- 1f. FIELD WORK. A two-week excursion to the Iron Ranges for practice in field methods, such as tracing contacts, working out structures and constructing and interpreting geologic maps. JOHNSTON and Assistants.
- 11. PALEONTOLOGY. Index fossils of North America. A study of fossils and fossilization. Uses of fossils in stratigraphic correlation.
- 23. ELEMENTS OF MINERALOGY. The crystal systems; morphological, physical, and chemical character of minerals; occurrence, genesis, and uses of minerals; classification and description of common minerals. Determinative work in laboratory, blowpipe analysis, sight identification. GROUT.
- 24. DESCRIPTIVE MINERALOGY. A continuation of Course 23, special attention being given to metalliferous and rock-forming minerals. Laboratory determination and sight identification. The use of the goniometer and microscope. Laboratory work, reference reading, and field excursions. GROUT.

24

- 73. HISTORICAL AND ECONOMIC GEOLOGY. (a) Historical Geology. The geologic history of North America, with special references to its syngenetic mineral deposits. (b) Economic Geology. A study of the non-metallic minerals of economic value, and discussions of the geologic guides to prospecting for these deposits. EMMONS, SOPER.
- **105b.** ELEMENTS OF ROCK STUDY. The occurrence and genesis of igneous, sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and alteration. The classification and methods of identification and description of rocks. GROUT.
- 106. PETROLOGY. The identification and study of minerals and rocks by optical methods; the study of igneous rocks, crystalline schists, and metamorphic rocks. The origin and classification of rocks. GROUT,
- 111. ORE DEPOSITS. The nature, distribution, and genesis of ore deposits of the United States; relations of ore deposits to geologic structure; the deformation and superficial alteration of ore deposits. EMMONS, SOPER.
- 112. PROBLEMS IN ORE DEPOSITS. Field excursions, map work, lectures on field and laboratory methods. EMMONS, SOPER.
- 114. GEOLOGY OF WESTERN MINING DISTRICTS. A study of the ore deposits of the West. A comparison of the more important deposits of the United States with foreign deposits. EMMONS.
- 115. ADVANCED PETROLOGY. The origin and alteration of rocks; their mineral and chemical composition; petrographic provinces, particularly those of the United States and Minnesota; advanced petrologic methods, microscopic, physical, and chemical. GROUT.
- 124. STRUCTURAL AND METAMORPHIC GEOLOGY. The conditions, processes, and results of metamorphism; structural features resulting from deformation under varying conditions of load. JOHNSTON.
- 138. TESTING ECONOMIC MINERALS. Methods of determining quality of mineral deposits, described and illustrated by laboratory tests of coal, oil, building stone, and metallic ores.
- 144. CONSTRUCTION AND INTERPRETATION OF GEOLOGIC MAPS. Hours to be arranged. Methods of geological examination; problems in construction and interpretation of geologic maps and sections, with special reference to underground mapping of metalliferous areas; field practice in plane table methods of topographic and geologic mapping. SOPER.
- 160. FIELD GEOLOGY. Six weeks in the field in the summer vacation period. Fields for 1914 are the Mesabi and Vermilion Ranges. Credit given only on completion of a satisfactory report. JOHNSTON.
- 214. SEMINAR IN ORE DEPOSITS. EMMONS.
- 247. GEOLOGY AND EXPLORATION OF LAKE SUPERIOR REGION. The geology of the Lake Superior iron districts. The methods used in the exploration

of iron ores; interpretation of drill cores; cartographic expression of drill data; models of drilled areas. The principles of magnetic surveying. JOHNSTON.

GERMAN

Professor Carl Schlenker; Assistant Professors Oscar C. Burkhard, Walter R. Myers; Instructors J. Theodore Geissendoerfer, Richard Wischkaemper.

COURSES						
No. Title	Lect. or rec. hrs.	Required of	Prereq. courses			
15. Beginning German	3	1st-yr. E. M. (Geol.)				
16. Beginning German	3	1st-yr. E. M. (Geol.)	15			
17. Scientific Intermediate	3	1st-yr. or Fr. E. M. (Geol.)	16			
18. Scientific Intermediate	3	1st-yr. or Fr. E. M. (Geol.)	17			
23. Advanced Scientific	. 3	Fr. E. M. (Geol.)	18 .			
24. Advanced Scientific	3	Fr. E. M. (Geol.)	23			

- 15-16. BEGINNING. Pronunciation, grammar, conversation, and composition; selected reading in easy prose and verse. BURKHARD.
- 17-18. SCIENTIFIC INTERMEDIATE. This course is arranged to meet the needs of students in the School of Mines. Text: Merckel's *Bilder aus der Ingenieurtechnik*. BURKHARD, MYERS.
- 23-24. ADVANCED SCIENTIFIC READING. Reading of monographs and periodicals. Geissendoerfer, Wischkaemper.

MECHANICAL ENGINEERING

Professor John J. Flather; Assistant Professor S. Carl Shipley; Instructors Peter Peterson, Edward Quigley, William H. Richards.

COURSES					
No.	Title	Lab. hrs.	Required of	Prereq. courses	
1a.	Carpentry	6(9 wks.)	1st-yr. E. M. & Met. E.		
3a.	Blacksmithing	6(9 wks.)	1st-yr. E. M. & Met. E.		
4a.	Foundry	6	1st-yr. E. M. & Met. E.		

- 1a. CARPENTRY. Woodworking, use of tools, bench work, wood-framing and timber joints. RICHARDS.
- 3a. BLACKSMITHING. Use of tools, forging, welding, tool-dressing, tempering. QUIGLEY.
- 4a. FOUNDRY PRACTICE. Moulding, casting, mixing metals, brass work, and core-making. PETERSON.

MECHANICS AND MATHEMATICS

Professor Elting H. Comstock; Assistant Professor Edwin M. Lambert; Instructor Edward W. Davis.

	COCKSES						
		Lect. or	Lab.		Prever.		
No	. Title	rec. hrs.	hrs.	Required of	COUTSES		
1.	Algebra	4		All 1st-yr. students			
2.	Solid Geometry	3		All 1st-yr. students			
3.	Computation & Mensuratio	n 3		1st-yr. E. M. & Met. E.			
4.	Mine Accounting		6	1st-yr. E. M. & Met. E.			
5.	Algebra & Trigonometry	6		All Fr.	1 & 2		
6.	Spherical Trig. & Anal. Get	om. 6		All Fr.	5		
7.	Calculus	5		All Soph.	6		
8.	Calculus	3		All Soph.	7		
9.	Mechanics	5		All Jr.	8		
10.	Mechanics	6		All Jr.	9		
11.	Mine Plant	6		Jr. E. M. & Met. E.	8		
12.	Mine Plant	3		Jr. E. M. & Met. E.	11		
13.	Hydraulics & Water-Power	5		All Sr.	10		
15.	Engineering Construction	1	4	Sr. E. M. & Met. E.	10		
16.	Mine Plant Design		10	Sr. E. M.	15		
18.	Mill & Smelter Design		6	Sr. Met. E.	15		

COURSES

- 1. ALGEBRA. Equations with one, two, or more unknown quantities, inequalities, involution and evolution, theory of exponents, surds, quadratic equations both numerical and literal, equations with one or more unknown quantities that can be solved by means of quadratic equations, progressions. DAVIS.
- 2. SOLID GEOMETRY AND MENSURATION. Demonstrations of most important theorems. Volumes, approximate volumes, prismoidal formula, etc. DAVIS.
- 3. COMPUTATION AND MENSURATION. Approximate computation, graphs, and graphical computation, logarithms and logarithmic computation, areas and approximations of areas, use of slide rule. LAMBERT.
- 4. ELEMENTARY MINE ACCOUNTING. Elementary accounting in general applications to mine accounts; primary records, labor, supply, mine and mill products, and fund sheets; secondary records, invoice, labor and supply, mine and mill cost sheets, trial balance. LAMBERT.
- 5. ALGEBRA AND TRIGONOMETRY. Functions and functional notation, factor and remainder theorems, factors and values of functions, determinants, development of functions, theory of equations, permutations and combinations; trigonometric ratios, right triangles, general definitions of trigonometric functions, analytic relations, addition formulas, trigonometric equations, and oblique triangles. DAVIS.
- 6. SPHERICAL TRIGONOMETRY AND ANALYTICAL GEOMETRY. General properties and solution of spherical triangles; systems of coördinates, loci, equations and properties of the straight line, transformation of coördinates, equations and properties of conics, general equations of the second degree, higher plane curves, space coördinates, point, plane, straight line, quadric surfaces. DAVIS.
- CALCULUS. Nature of differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, expansion of functions, indeterminate forms, partial derivatives, change of variable. LAMBERT.

- 8. CALCULUS. Elementary integration, undetermined coefficients, rational fractions, rationalization, formulas of reduction, hyperbolic functions, some differential equations of mechanics. LAMBERT.
- 9. MECHANICS. Composition and resolution of forces, laws of equilibrium, practical applications, rectilinear motion, circular motion, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy; elementary mechanics of materials. LAMBERT.
- 10. MECHANICS. Mechanical and elastic properties of materials of construction; beams, shafts, columns, reinforced concrete, hollow cylinders and spheres, rollers, plates; theory of internal stress. LAMBERT.
- 11-12. MINE PLANT. Discussion of the machinery and appurtenances employed in the equipment of mines. Air compression, mechanical features of hoisting, pumping, ventilation, underground transportation. Electricity applied to mining. Сомsтоск.
- 13. HYDRAULICS AND WATER-POWER. Laws of the equilibrium, pressure, and flow of liquids, estimation of power to be developed at a power site, dams and appendages, theory of water wheels and turbines, speed control, power-house equipment, transmission. Comstock.
- 15. ENGINEERING CONSTRUCTION. Theory of structures, loading, analytic and graphic resolution of stresses in framed structures, stresses in mining structures, design of mining structures. Comstock.
- MINE PLANT DESIGN. A study of power possibilities, costs, etc., and designs of a power plant, surface equipment, and structures for a mine. COMSTOCK.
- MILL AND SMELTER DESIGN. A study of the construction and mechanical equipment of mills and smelters in connection with thesis work. COMSTOCK.

METALLURGY

Professors William R. Appleby, Peter Christianson, Levi B. Pease; Assistant Professor Samuel L. Hoyt.

				COUR	SES	
No.				Lab. hrs.	Required of	Prereq. courses
2.	Assaying	•••	4	8	All Fr.	Chem. 5, Min- eral.23
3.	Gen. Met. & Iron and Steel		3		Soph. E. M. & Met. E.	2, Chem. 6
4.	Wrought Iron & Steel		3		Soph. E. M. & Met. E.	3
6f.	Field Work in Metallurgy		. 1	0 days	Jr. E. M. & Met. E.	Satisfactory completion of Jr. yr.
7.	Ore Testing		2	8	Sr. E. M. & Met. E.	106, Min. 8
8.	Metallurgy		3		Soph. E. M. (Geol.)	2
11.	Special Problems in Met			8	Sr. Met. E.	106, Min. 8
12.	Thesis & Specifications	′ .		10	Sr. Met. E.	11
105.	Met. of Base Metals		4		Jr. E. M. & Met. E.	4

METALLURGY

COURSES							
		-		t. or	Lab.		Prereq.
No.		Title	rec.	hrs.	hrs.	Required of	courses
106.	Met. o	f Precious Metals.		4		Jr. E. M. & Met. E.	105
109.	Electro	ometallurgy		3		Sr. Met. E.	106
152.	Metall	ography		2	4	Sr. Met. E.	106
153.	Metall	ography		2	4	Elective	Chem. 104,
							Phys. 1 & 2
154.	Metall	ography		2	4	Elective .	153
155.	Metall	og. for Geologists.		2	2	Elective	Geol. 73 & 106
156.	Metall	og. for Geologists.		2	2	Elective	155
158.	Metall	og. for Engineers .		3	• •	Elective	Mech. Eng. 3 & 4
160.	Metall	og. for Chemists		3		Elective	Chem. 104, Phys. 1 & 2

- 2. Assaying. Determination of values of ores, metallurgical products, and bullion. AppLEBY and Assistants.
- 3. GENERAL METALLURGY AND METALLURGY OF IRON. Including the subjects of combustion, fuels, refractory materials and furnaces. Lectures and recitations on metallurgy of iron. CHRISTIANSON.
- 4. METALLURGY OF WROUGHT IRON AND STEEL. Consideration of the principles of manufacture, details of plant construction, and chemical and physical phenomena. CHRISTIANSON.
- 6f. FIELD WORK IN METALLURGY. Study of metallurgical operations at smelters and mills. Detailed report is required covering plants visited. CHRISTIANSON, PEASE.
- 7. ORE TESTING. Determinations of methods of ore treatment, stamping, concentration, cyanidation, roasting, chlorination, lixiviation, and amalgamation. APPLEBY and Assistants.
- 8. METALLURGY. A short course covering the metallurgy of the principal metals. CHRISTIANSON.
- 11. SPECIAL PROBLEMS IN METALLURGY. Research work preparatory to thesis. APPLEBY and Assistants.
- 12. THESIS AND SPECIFICATIONS. Detailed investigations of ore treatment, with report including designs and specifications for suitable plants. APPLEBY, COMSTOCK, and Assistants.
- 105. METALLURGY OF THE BASE METALS. Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining methods. PEASE.
- 106. METALLURGY OF THE PRECIOUS METALS. Gold, silver, and platinum. Methods and principles of cyanidation, chlorination, amalgamation, and lixiviation as applied to the treatment of the above. PEASE.
- **109.** ELECTROMETALLURGY. A study of the reduction of ores, refining of metals, and production of metals by electrolytic deposition; and the use of the electric furnace for smelting of ores, refining metals, and the manufacture of refractory alloys. CHRISTIANSON.

- 152. METALLOGRAPHY. A study of the microstructure of metals and alloys as affected by heat and industrial treatments, together with the influence of changes of structure on their properties. Special attention is given to siderurgic products. Hoyt.
- 153-154. METALLOGRAPHY. Study of constitution diagrams; the Phase Rule; microscopic and thermal analysis of alloys; relation between the constitution and physical and chemical phenomena of binary alloys; metallographic apparatus. Study of the commercial alloys, their heat and industrial treatments with special attention given to siderurgic products. Hoyt.
- 155-156. METALLOGRAPHY APPLIED TO THE STUDY OF GEOLOGY. Application of metallographical principles and methods of research to geology, with special attention to the genesis of rocks and ore bodies. The microscopical examination of opaque minerals by reflected light. Hoyr.
- 158. METALLOGRAPHY FOR ENGINEERING STUDENTS. Study of metallurgical principles, constitution of the steels and cast irons, influence of impurities. Metallographic study of foundry practice, heat and mechanical treatment of metals, influence of treatment and chemical composition on the physical properties of iron and steel. Microscopic examination of the commercial alloys. Preparation of specimens for microscopic examination, manipulation of the microscope, therma! analysis and heat treatment. Hoyt.
- 160. METALLOGRAPHY FOR CHEMISTRY STUDENTS. Internal, physical, and chemical statics of metallic alloys, constitution diagrams, metallographic study of the iron-carbon alloys with particular attention to the chemical composition and microstructure. Principles of heat treatment and thermal analysis. Preparation of specimens for microscopical examination, and manipulation of the microscope. Hoyr.

MINING ENGINEERING

Professors George J. Young, Edward P. McCarty; Instructors Ervin W. McCullough, John F. Murphy.

COURSES						
	Lect. or Lab.					
No.	Title	rec. h	rs. hrs.	Required of	courses	
1.	Mine Surveying	3		All Soph.	Math. 6	
2.	Mine Surveying	3	1	All Soph.	1	
2f.	Field Work		7 wks.	All Soph.	2	
4.	Mine Mapping		6	All Jr.	2f	
б.	Mining	1		All Soph.		
8.	Ore Dressing	5		All Jr.	9	
9.	Mining	5		All Jr.	6	
10.	Mining	5		All Jr.	9	
10f.	Practical Mining	•••	2 wks.	All Jr.	Satisfactory completion of Jr. yr.	
11.	Mining	5.		Sr. E. M. & E. M. (Geol.)	10	
12.	Mining	5		Sr. E. M. & E. M. (Geol.)	- 11	
13.	Thesis		2	Sr. E. M.	10f	
14.	Thesis		8	Sr. E. M.	13	

COURSES

PHYSICS

- 1, 2. MINE SURVEYING. Computation, platting, and problems with special reference to mine surveying. MURPHY.
- 2f. FIELD WORK. Practice in general surveying during the month of May. Practice in underground surveying during the first two weeks of June. This work is given on the Iron Ranges. McCarty, Murphy.
- 4. MINE MAPPING. Mine mapping in accordance with prevalent practice in the western mining districts. Ore and stripping estimates and mine maps based on Mesabi Range practice. MURPHY.
- 6. MINING. Examination and testing, and use of explosives. McCullough.
- 8. ORE DRESSING. Examination of ores, crushing, sizing classification, and methods of mechanical separation. Young.
- 9. MINING. Occurrence of ore bodies, prospecting, churn and diamond drilling, drilling, blasting, excavation, surface transportation, tunneling and drifting. Young.
- 10. MINING. Shaft-sinking, support of underground excavations, hoisting. drainage, ventilation, underground transportation. Young.
- 10f. PRACTICAL MINING. Study of mining operations. Mine plant and equipment and practical mining work; a mine to be selected by department during months of May, June, July, and August. Young, Comstock, and Assistants.
- 11. MINING. Open pit, quarrying, underground methods, coal mining, mining alluvial deposits. Young.
- 12. MINING. Mine management, mining law, economics of mining, mine examination, mine sanitation and hygiene. Young.
- 13, 14. THESIS. Conference. Design and specifications of mining details required in thesis study. YOUNG.

PHYSICS

Professors John Zeleny, Anthony Zeleny; Assistant Professor Henry A. Erikson; Instructors Paul E. Klopsteg, James C. Sanderson.

		(COURSES		
No.	Title	Lect. or rec. hrs.		Required of	Prereq. courses
1. General	Physics	3		All Soph.	Math. 6
2. General	Physics	3		All Soph.	1
3. General	Lab. Practice		2	All Soph.	With 1
4. General	Lab. Practice		2	All Soph.	With 2

- 1. GENERAL PHYSICS. Mechanics of solids and fluids, sound and heat. Treatment experimental rather than mathematical; the fundamental principles. ZELENY, SANDERSON, KLOPSTEG.
- GENERAL PHYSICS. Light, electricity, and magnetism. Treatment experimental; the fundamental principles, including those of radioactivity,

ionization, X-radiation, and the electrical constitution of matter. ZELENY, SANDERSON, KLOPSTEG.

- 3. GENERAL LABORATORY PRACTICE. Physical measurements in the mechanics of solids and fluids, and in heat and sound, giving the student a knowledge of experimental methods and an intimate acquaintance with the fundamental facts of the subject. ERIKSON, SANDERSON.
- 4. GENERAL LABORATORY PRACTICE. Physical measurements in light, electricity, and magnetism. ERIKSON, SANDERSON.

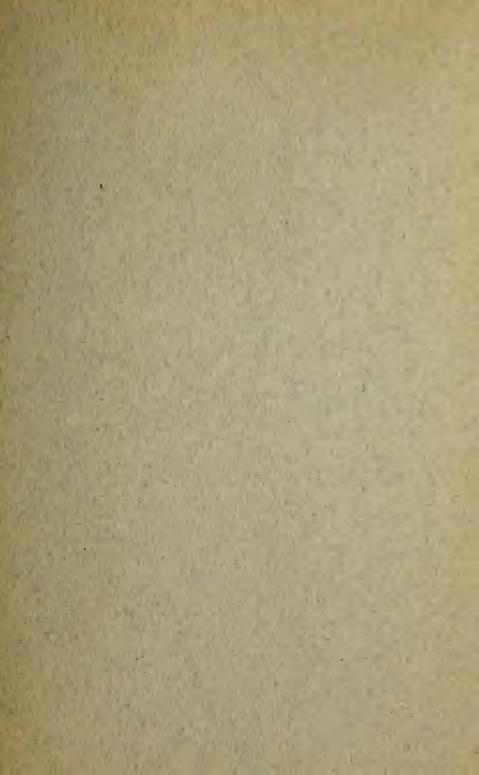
RHETORIC

Professor Joseph M. Thomas; Instructors Frank B. Russell, Howard T. Viets.

COURSES

No. Title	Rec. hrs.	Required of	Prereq. courses
3. Composition (Engineers)	3	All 1st-yr. students	
4. Composition (Engineers)	3	All 1st-yr. students	3

3, 4. COMPOSITION FOR ENGINEERS. Practical training in writing with special reference to the needs of engineering students, and the study of those writers who have handled scientific subjects with clearness and power. A course of outside reading will also be required. RUSSELL, VIETS.


ROMANCE LANGUAGES

Professor Everett Ward Olmsted; Assistant Professor Jules T. Frelin; Instructors E. H. Sirich, Herbert K. Stone; Assistant Homer Desmarais.

COURSES

No	. Title	Rec. hrs.	Required of	courses
1.	Beginning French	3	1st-yr. E. M. (Geol.)	
2.	Beginning French	3	1st-yr. E. M. (Geol.)	1
3.	Intermediate French	3	1st-yr. or Fr. E. M. (Geol.)	2
4.	Intermediate French	3	1st-yr. or Fr. E. M. (Geol.)	3
5.	Survey French Lit	3	Fr. E. M. (Geol.)	4
6.	Survey French Lit	3	Fr. E. M. (Geol.)	5
31.	Beginning Spanish	3	1st-yr. E. M. & Met. E.	
32.	Beginning Spanish	3	1st-yr. E. M. & Met. E.	31

- 1-2. BEGINNING FRENCH. Stress on accurate pronunciation, reading, reading vocabulary, and the essentials of grammar. Daily oral and written exercises (dictation and reproduction in French). DESMARATS.
- 3-4. INTERMEDIATE. French grammar, composition, and reading; increased use of French in the classroom. Selections from modern prose and poetry. FRELIN, DESMARAIS.
- 5-6. GENERAL SURVEY OF FRENCH LITERATURE. Lectures, recitations, and assigned readings. Designed to cover the whole period in historical outline. Selections from representative authors. OLMSTED.
- 31-32. BEGINNING SPANISH. Pronunciation, grammar, conversation, and composition; selected reading in easy prose. OLMSTED.

Bulletin of The University of Minnesota

THE SCHOOL OF MINES

1915-1916

AUG 28 1915 PRESIDENT'S OFFICE

VOL. XVIII. NO. 11. JULY 1915

Entered at the Post-Office in Minneapolis as second-class matter Minneapolis, Minn.

1915	1916			
JULY	JANUARY	JULY		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
AUGUST	FEBRUARY	AUGUST		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
SEPTEMBER	MARCH	SEPTEMBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
OCTOBER	APRIL	OCTOBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
NOVEMBER	MAY	NOVEMBER		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 JUNE	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 DECEMBER		
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

UNIVERSITY CALENDAR

1915-1916

The university year covers a period of thirty-eight weeks, beginning on the Tuesday before the second Thursday in September. Commencement Day is always the second Thursday in June.

1915 August 31 Tuesday Registration closes except for new students September 1-8 Fees payable except for new students Week September 7-14 Week Examinations for the removal of conditions (except Colleges of Agriculture and Forestry), entrance examinations, registration of new students, and payment of fees First semester begins September 15 Wednesday September 27 Monday Agricultural College, farm experience examination October 4 School of Agriculture, first term begins Monday October 7 Thursday Senate meeting, 4:00 p.m. November 8 Monday Dairy School opens November 24 Wednesday Thanksgiving recess begins 9:00 p.m. November 29 Monday Thanksgiving recess ends 8:00 a.m. Nov. 29 to Dec. 4 Week Second semester condition examinations. Colleges of Agriculture and Forestry December 2 Thursday Senate meeting, 4:00 p.m. December 6-11 Week Short course for ice-cream makers December 11 Saturday Dairy School closes December 17 Friday Christmas vacation begins 9:00 p.m. School of Agriculture, first term closes December 17 Friday 1916 January 3-8 Farmers' Short Course Week Tanuary 4 Tuesday Christmas vacation ends 8:00 a.m. Tuesday Registration for second semester closes January 18 January 21 Friday School of Agriculture, second term begins 24 Monday Final examinations begin Tanuary January 25 Tuesday Payment of fees for second semester closes Second semester begins February 2 Wednesday 3 Senate meeting, 4:00 p.m. February Thursday Lincoln's Birthday: a holiday February 12 Saturday February 22 Tuesday Washington's Birthday: a holiday School of Agriculture closes March 30 Wednesdav

April	3-8	Week	Junior Short Course
April	19	Wednesday	Easter recess begins 9:00 p.m.
April	27	Thursday	Easter recess ends 8:00 a.m.
May	1-6	Week	Condition examinations in certain col-
			leges
May	2	Tuesday	Traction Engineering Course begins
May	4	Thursday	Senate meeting, 4:00 p.m.
May	26	Friday	Final examinations begin
May	30	Tuesday	Memorial Day: a holiday
June	1-8	Week	Military Encampment, Fort Snelling
June	3	Saturday	Second semester closes
June	4	Sunday	Baccalaureate service
June	5	Monday	Senior class day exercises
June	7	Wednesday	Alumni Day
June	8	Thursday	Forty-fourth Annual Commencement
June	9	Friday	Summer vacation begins
June	12	Monday	Summer Session begins

The university year for 1916-17 will begin Tuesday, September 12.

Program of Supplementary Examinations

Tuesday,	Sept. 7	9-12 a.m.	Mechanics and Mathematics
		2-5 p.m.	Mining Engineering Subjects
Wednesday,	Sept. 8	9-12 a.m.	Chemistry
		2-5 p.m.	Drawing and Descriptive Geometry
		2-5 p.m.	Mechanical Engineering Subjects
Thursday,	Sept. 9	9-12 a.m.	Metallurgical Subjects
		2-5 p.m.	Physics
Friday,	Sept. 10	9-12 a.m.	Electrical Engineering Subjects
		2-5 p.m.	Geology and Mineralogy

THE SCHOOL OF MINES

FACULTY

1005 5th St. S. E. GEORGE EDGAR VINCENT, Ph.D., LL.D., President CYRUS NORTHROP, LL.D., President Emeritus 519 10th Ave. S. E. WILLIAM R. APPLEBY, M.A., Dean and Professor of Metallurgy 928 5th St. S. E. *CHARLES E. VAN BARNEVELD, B.A.Sc., E.M., Professor of Mining Engineering OSCAR C. BURKHARD, M.A., Assistant Professor of German 719 E. River Road PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy 217 Union St. S. E. ELTING H. COMSTOCK, M.S., Professor of Mine Plant and Mechanics 1416 7th St. S. E. WILLIAM H. EMMONS, Ph.D., Professor of Mineralogy and Geology 611 11th Ave. S. E. HENRY A. ERIKSON, Ph.D., Professor of Physics 424 Harvard St. S. E. JOHN J. FLATHER, Ph.B., M.M.E., Professor of Mechanical Engineering 315 11th Ave. S. E. GEORGE B. FRANKFORTER, Ph.D., Professor of Chemistry 525 E. River Road FRANCIS C. FRARY, Ph.D., Assistant Professor of Chemistry 305 Walnut St. S. E. JULES T. FRELIN, B.A., Assistant Professor of Romance Languages 1206 5th St. S. E. FRANK F. GROUT, M.S., Assistant Professor of Geology and Mineralogy 617 4th St. S. E. SAMUEL L. HOYT, E.M., Ph.D., Assistant Professor of Metallography 1011 14th Ave. S. E. WILLIAM H. KAVANAUGH, M.E., Professor of Experimental Engineering 124 State S. E. WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive Geometry 722 10th Ave. S. E. EDWIN M. LAMBERT, M.E., Assistant Professor of Mine Plant and Mechanics 1086 12th Ave. S. E. EDWARD P. MCCARTY, E.M., Professor of Mining 3615 Lyndale Ave. S. FRANKLIN R. MCMILLAN, C.E., Assistant Professor of Structural Engineering 524 8th Ave. S. E. EVERETT W. OLMSTED, Ph.D., Professor of Romance Languages 901 5th St. S. E. LEVI B. PEASE, M.S., Professor of Metallurgy 1070 16th Ave. S. E. WILLIAM T. RYAN, E.E., Assistant Professor of Electrical Engineering 3228 4th St. S. E. "On leave of absence 1913-16,

CARL SCHLENKER, B.A., Professor of German 514 11th Ave. S. E. GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Professor of Electrical Engineering 717 E. River Road S. CARL SHIPLEY, B.S., M.E., Assistant Professor of Machine Construction 1517 E. River Road CHARLES F. SHOOP, B.S., Assistant Professor of Experimental Engineering 811 Fulton St. S. E. CHARLES F. SIDENER, B.S., Professor of Chemistry 1320 5th St. S. E. GEORGE J. YOUNG, B.S., Professor of Mining Engineering 719 7th St. S. E. ANTHONY ZELENY, Ph.D., Professor of Physics 613 Fulton St. S. E. EDWARD W. DAVIS, B.S., Instructor in Mechanics and Mathematics 979 14th Ave. S. E. ROBERT W. FRENCH, B.S., Instructor in Drawing 1018 16th Ave. S. E. J. THEODORE GEISSENDOERFER, Ph.D., Instructor in German 967 14th Ave. S. E. A. WALFRED JOHNSTON, M.A., Instructor in Geology 112 Church St. S. E. PAUL E. KLOPSTEG, M.A., Instructor in Physics 328 Oak St. S. E. ERVIN W. McCullough, E.M., Instructor in Mining 934 E. Bayliss Ave., St. Paul JOHN J. MURPHY, C.E., Instructor in Mining 619 University Ave. S. E. EDMUND NEWTON, E.M., Instructor in Metallurgy 941 14th Ave. S. E. 3709 Clinton Ave. PETER E. PETERSON, Instructor in Foundry Practice EARL PETTIJOHN, M.S., Instructor in Chemistry 2282 Carter Ave., St. Paul EDWARD P. QUIGLEY, Instructor in Forge Work 2923 Chicago Ave. WILLIAM H. RICHARDS, Instructor in Carpentry 1423 W. 27th St. FRANK B. ROWLEY, B.S., M.E., Instructor in Drawing 217 Beacon St. S. E. EDGAR K. SOPER, B.A., Instructor in Economic Geology 112 Church St. S. E. WOLDEMAR M. STERNBERG, B.S.Chem., Instructor in Chemistry 3345 University Ave. S. E. HERBERT K. STONE, M.A., Instructor in French 112 Church St. S. E. STERLING TEMPLE, M.A., Instructor in Chemistry 1758 Blair St., St. Paul RICHARD WISCHKAEMPER, M.A., Instructor in German 979 14th Ave. S. E. HOMER A. DESMARAIS, B.A., Assistant in French 438 4th St. N. E.

GENERAL INFORMATION

The School of Mines was established by the Board of Regents in 1888, upon recommendation of the General Faculty of the University. The buildings and laboratories of the School are located on the main campus of the University. The mining districts of Minnesota are within a few hours, by rail, from Minneapolis. The heartiest coöperation exists between the various mine managements and the School, so that the mining properties are at all times open to parties from the school for observation and study trips. Practical surveying, geological field work, and underground work are carried on in one or more of the districts. Students in the School of Mines have, therefore, all the advantages afforded by a large university combined with ample opportunity for field observation and experience.

At the opening of the college year 1915-1916, the School of Mines will occupy the new building provided by the Legislature of 1913. In the basement are the assay and electro-metallurgical laboratories, together with machinery room, instrument room, balance room, furnace rooms, and necessary storerooms. On the first floor are the administrative offices, offices and lecture rooms of the departments of Metallurgy and Mine Plant and Mechanics. On the second floor are the offices, lecture rooms and drafting rooms of the department of Mining, the ore dressing laboratory, and the library of the school. On the third floor are the offices, laboratories, and lecture rooms of the department of Metallography, junior drafting room, photographic dark rooms, blue printing room, and offices and computing rooms for the branch of the Experiment Station serving the Tax Commission.

DEGREES

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of Engineer of Mines (E.M.), Engineer of Mines in Geology [E.M. (Geology)], and Metallurgical Engineer (Met.E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four or five years, and vice versa, provided such candidate completes an additional year's work at the School and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and the Mechanic Arts, and in the School of Analytical and Applied Chemistry, who contemplate taking a degree in this School after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

SCHOOL OF MINES

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thoro courses in mechanics, mathematics, surveying, physics, chemistry, and the necessary theory and practice of structural, mechanical and electrical engineering.

(a) Geology—to determine the location of the ore.
(b) Mineralogy—to determine its nature.
(c) Assaying—to determine if it has value for treatment.
(d) Mining Engineering—to furnish material for treatment.
(e) Ore Testing—to determine best methods of treatment.
(f) Ore Dressing—furnishing products for metallurgical treatment.
(g) Metallurgy—smelting and refining ores and ore dressing products; reduction to metals.

EXPERIMENT STATION

The School of Mines Experiment Station has been recently established to promote the development of the mining and mineral resources of the state, to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates for the Tax Commission and to do such other work along the lines above outlined as may be requested by other state departments. Coöperation has been effected with the Minnesota Geological Survey and the School of Chemistry.

The Experiment Station is prepared to assist citizens interested in these lines of work; to assay specimens of ore, rocks, clays, and minerals found within the state free of charge.

In submitting samples the sender must state the exact location where each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the office of the Station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, The University of Minnesota, Minneapolis, Minnesota.

LIBRARY

The library occupies a well-lighted room, 55 feet by 61 feet, on the second floor of the School of Mines building. The books have been carefully selected and form a working collection of great value, not only to the faculty and students, but also the mining men of the state. Only books relating to mining, metallurgy, metallography, geology and allied subjects are shelved in this library, the general university library as well as the public libraries of Minneapolis and St. Paul serving as reserve collections. The library is especially rich in complete sets of periodicals, transactions, and the reports of state and foreign mining departments. Foreign technical literature is well represented. A card index is kept of all articles of value and interest appearing in the leading periodicals.

ADMISSION

The courses leading to the degrees of Engineer of Mines, Engineer of Mines (in Geology) and Metallurgical Engineer may be completed in either four or five years. Students may enter the School of Mines without preparation in Higher Algebra and Solid Geometry. Such students must enter the five-year courses. It is recommended that students who come poorly prepared in Mathematics enter the five-year courses.

Students may be admitted to the School of Mines either by certificate or examination, or both.

ADMISSION BY EXAMINATION

Entrance examinations are offered at the University during the opening week, September 7 to 10. Candidates entering by this method must pass examinations in fifteen units so chosen as to satisfy the requirements outlined below. Certificates from the College Entrance Examination Board and from the High School Board are accepted in lieu of examinations in the subjects they represent. Those desiring to take examinations should notify the Registrar of the University in writing not later than August 31. See schedule of examinations, page 4.

ADMISSION BY CERTIFICATE

Graduates of the following courses, provided their preparation satisfies the requirements outlined below, may be admitted.

1. Any four-year course of a Minnesota state high school or other accredited school in the state.

2. A four-year course of schools in any other state accredited to the state university of that state.

3. The Advanced Latin and Advanced English courses of the Minnesota state normal schools.

The applicant for admission should request the principal or superintendent to forward to the Registrar of the University a complete transcript of his high-school or preparatory-school record showing the number of weeks and hours per week spent upon each study, with the grades entered as *passed*, *passed* with credit, or *passed* with honor. Credential blanks prepared by the University must be used; these blanks may be secured upon application to the Registrar. Upon receipt of the credentials at the University the Registrar will notify the applicant with regard to his admission.

ENTRANCE REQUIREMENTS

FIVE-YEAR COURSES

English, three units; Elementary Algebra and Plane Geometry, one unit each; ten additional units, of which not more than four may be in Group F.

FOUR-YEAR COURSES

Same as five-year courses with the addition of one-half unit each of Higher Algebra and Solid Geometry. It is recommended that students who enter these courses review Higher Algebra and Solid Geometry. Those unable to carry freshman mathematics satisfactorily will be required to drop back into the five-year course.

LIST OF ENTRANCE SUBJECTS

The term *unit* means not less than five recitations of forty minutes each per week for a period of thirty-six weeks. In manual subjects and kindred courses, it means the equivalent of ten recitation periods per week for thirty-six weeks.

GROUP A. ENGLISH, three units.

GROUP B. LANGUAGES: Latin, Greek, German, French, Spanish, Scandinavian, one to four units each.

GROUP C. HISTORY AND SOCIAL SCIENCES: Ancient and Modern History, one unit each; English and Senior American History, one-half unit each; American Government, Economics, Economic History of England. and Economic History of the United States, one-half unit each; Commercial Geography, and History of Commerce, one-half or one unit each.

GROUP D. MATHEMATICS. Elementary Algebra and Plane Geometry, one unit each; Higher Algebra, Solid Geometry, and Trigonometry, one-half unit each.

GROUP E. NATURAL SCIENCES. Physics and Chemistry, one unit each; Botany and Zoology, one-half or one unit each; Physiology, Astronomy, Geology, and Physiography, one-half unit each.

GROUP F. VOCATIONAL SUBJECTS: Business Law and Business Arithmetic, one-half unit each; Elementary and Advanced Bookkeeping, one unit each; Stenography and Typewriting, one or two units. Freehand Drawing, Mechanical Drawing, and Shopwork, one or two units each. Agriculture, one to four units. Normal Training subjects, one to three units, provided the applicant has had one year of subsequent teaching experience.

DESCRIPTION OF SUBJECTS ACCEPTED FOR ADMISSION

A description of the subjects accepted for admission to the University will be found in the Bulletin of General Information, which will be sent to any address upon application to the Registrar. The University of Minnesota, Minneapolis, Minnesota.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

ADMISSION TO ADVANCED STANDING

This University accepts records from all reputable colleges and universities for credit to advanced standing. Such records are accepted as far as they are equivalent to the work done in this institution. In bringing records from other institutions, the certificate must be upon the official blank of the institution granting the certificate and should show:

- (a) The subject studied; if a language, the books, read, etc.
- (b) The number of weeks and hours per week spent upon each subiect.
- (c) Ground covered in laboratory work in case of laboratory subjects.
- (d) The result. The exact grades should be stated, accompanied by an explanation of the marking system employed.

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrollment Committee of the School of Mines.

EXPENSES

One half of the Annual Incidental Fee of \$55.00, which includes all laboratory charges, is payable at the opening of each semester. Cards entitling the student to admission to classes will not be issued until the fees have been paid. Books and supplies for each year of the course cost approximately \$25.00. Field-work expense during the sophomore year is estimated at \$150.00 and for the junior year at \$225.00.

DEPOSIT FEE

At the beginning of each year, in addition to the first semester incidental fee, a deposit fee of five dollars is required of every student to cover the following items:

Change of Registration..... Examination for removal of condition at set time....\$1.00 per subject Rental of post-office box, University post-office (required

Locker rental, locker key deposit \$.50 to \$1.00 per year Laboratory breakages, or damage to University property. Penalties for late registration or late payment of fees.

A penalty fee of one dollar (\$1.00) must be paid by all students who register or pay fees after the prescribed time. (See calendar, page 3.) After the day previous to that on which classes begin, the penalty for delay increases at the rate of twenty-five cents a day.

The unused balance of the deposit fee will be returned at the end of each year. If, at any time during the college year, the amount of charges against a student exceed the amount of the deposit, a second fee of five dollars (\$5.00) will be required.

SPECIAL FEES

The following special items may be included in the expenses of a student:

Minnesota Union membership\$1.00 per semester
Special examination for removal of condition, at other than the
set time 5.00
Examination on subject taken out of class 5.00
No fee for such examinations on first entering the Univer-
sity, if taken within the first six weeks.
Military uniform
Gymnasium suit 5.00

THE ELLIOT SCHOLARSHIP LOAN FUND

To fulfill the wish of the late Dr. A. F. Elliot to aid young men who find their efforts to obtain a practical education embarrassed through lack of means, the sum of \$5,000 was placed in the hands of the Board of Regents as a scholarship fund. The income from this fund is loaned students in the School of Mines on the following conditions: the financial needs of the applicant, his scholarship, moral character, enthusiasm shown in his work, and promise of usefulness in his profession. When money is available, it may be loaned to pay the expenses of worthy students during sickness. The loans are to be repaid, without interest, at the earliest convenience of the recipients.

GRADUATION

Students completing courses of study to the satisfaction of the Faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examinations in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least one full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the Faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examinations held at the end of the second semester. Irregular attendance will debar a student from entering all final examinations.

THESIS

The thesis work is intended to bring in review and connect the work in Mining and Metallurgy, Geology and Mineralogy, Mechanical and Electrical Engineering, Mathematics and Mechanics. It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology, for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem, for candidates for the degree of Metallurgical Engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

Prior to the reopening of Field Work at the School of Mines, Tuesday, September 7, 1915, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on the project must be under way by December 1. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the School.

SPECIAL NOTES

Students failing to receive a semester mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the Registrar his average in all subjects and present himself for supplementary examinations, according to the program given on page 4.

Failure of the Registrar to notify a student of deficiencies will not be accepted as a reason for neglecting to report for necessary supplementary examinations. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

Students failing to receive a semester mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The Faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination at the end of the first or second semester will be given zero on the examinations.

Students whose absences in either semester exceed four weeks in the aggregate are not permitted to take examinations without special permission of the Faculty.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

During the academic year students will be held responsible for the receipt of official communications sent to them through the University post-office. During the summer vacation they will be held responsible for the receipt of such communications sent to their home address as given on their registration blank for the preceeding academic year, unless formal notification of their correct address is filed with the Registrar and the Dean.

COURSES OF STUDY

UNIFORM CURRICULUM TO END OF SOPHOMORE YEAR

The courses leading to the degrees of Engineer of Mines, Engineer of Mines in Geology, and Metallurgical Engineer, are uniform for the first three years of the five-year courses and for the first two years of the four-year courses.

FIVE--YEAR COURSES FIRST YEAR

First Semester

Chemistry 5*, General and Analytical, 5† Mathematics 1, Computation and Mensuration, 4 Mathematics 3, Mine Accounting, 6 Mechanical Engineering 1, Shop Work, 6 Mineralogy 23, Elements of Mineralogy, 8 Military Drill

Second Semester

Chemistry 6, General and Analytical, 7, Chem. 5 Mathematics 2, Algebra, 4 Mechanical Engineering 1, Shop Work, 6 Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23 Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23 Military Drill

FRESHMAN YEAR

First Semester

Chemistry 11, Quantitative Analysis, 7, Chem. 5, 6 Drawing 11, Engineering Drawing, 10 Geology 105, Elements of Rock Study, 4, Mineral. 24 Mathematics 5, Algebra and Trigonometry, 6, Math. 1, 2 Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2 Military Drill

*Odd numbers indicate first-semester courses; even numbers, second-semester courses. A combination of the two (e. g., 5-6) indicates courses continuing through the year. In the case of courses repeated the second semester, the suffix a indicates first semester; the suffix b, second semester.

[†]Figure following the descriptive name of a course indicates number of hours a week. Course names following indicate prerequisite courses.

SCHOOL OF MINES

Second Semester

Chemistry 12, Quantitative Analysis, 7, Chem. 11 Drawing 12, Engineering Drawing, 8, Draw. 11 Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5 Geology 1b, General Geology, 3, Mineral, 24 Geology 106, Petrology, 4, Geol. 105 Metallurgy 4, Wrought Iron and Steel, 3, Met. 3 Military Drill

SOPHOMORE YEAR

First Semester

Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6

Mathematics 7, Calculus, 5, Math. 6

Geology 73, Historical and Economic Geology, 3, Geol. 106

Metallurgy 105, Base Metals, 4, Met. 4

Mining 1, Mine Surveying, 3, Math. 6

Physics 1, General, 3, Math. 6

Physics 3, General Laboratory Practice, 2, with Physics 1

Second Semester

Drawing 14, Drafting, 4, Draw. 13

Mathematics 8, Calculus, 3, Math. 7

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 2, Mine Surveying, 3, Min. 1

Mining, 6, 1

Physics 2, General, 3, Physics 1

Physics 4, General Laboratory Practice, 2, with Physics 2

Field Work. Months of May, June, July and August Mining 2f, Surveying, Min. 2, beginning about May 1 Geology 1f, Geol. 1b, 105, beginning about June 15 Underground Mining Work, beginning about July 1

FOUR-YEAR COURSES

FRESHMAN YEAR

First Semester

Chemistry, 5 General and Analytical, 5 Drawing 11, Engineering Drawing, 10 Mathematics 5, Algebra and Trigonometry, 6 Mineralogy 23, Elements of Mineralogy, 8 Military Drill

Second Semester

Chemistry 6, General and Analytical, 7, Chem. 5 Drawing 12, Engineering Drawing, 8, Draw. 11 Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5 Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23 Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23 Military Drill

SOPHOMORE YEAR

First Semester

Chemistry 11, Quantitative Analysis, 7, Chem. 5, 6

Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6

Geology 105, Elements of Rock Study, 4, Mineral. 24

Mathematics 7, Calculus, 5, Math. 6

Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2

Mining 1, Mine Surveying, 3, Math. 6

Physics 1, General, 3, Math. 6

Physics 3, General Laboratory Practice, 2, with Physics 1 Military Drill

Second Semester

Chemistry 12, Quantitative Analysis, 7, Chem. 101

Drawing 14, Drafting, 4, Draw. 13

Geology 1b, General Geology, 3, Mineral. 24

Geology 106, Elements of Rock Study, 4, Mineral. 24

Mathematics 8, Calculus, 3, Math. 7

Metallurgy 4, Wrought Iron and Steel, 3, Met. 3

Mining 2, Mine Surveying, 3, Min. 1

Mining 6, 1

Physics 2, General, 3, Physics 1

Physics 4, General Laboratory Practice, 2, with Physics 2 Military Drill

Field Work. Months of May, June, July, and August Mining 2f, Surveying, Min. 2, beginning about May 1 Geology 1f, Geo. 1b, 105, beginning about June 15

- Underground Mining Work, beginning about July 1

COURSES IN MINING ENGINEERING

COURSES LEADING TO THE DEGREE OF E.M.

FIVE-YEAR COURSES

JUNIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12

Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11

Geology 111, Ore Deposits, 4, Geol. 106

Mechanics 9, 5, Math. 8

Mechanics 11, Mine Plant, 3, Math. 8

Mining 7, Ore Dressing, 5, Geol. 106

Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Mech. 10 Geology 112, Problems in Ore Deposits, 4 Geol. 111

Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15 Underground Mining Work, beginning about June 1

SENIOR YEAR

First Semester

Electrical Engineering 53, Electric Power, 5, Physics, 3, 4 Mechanics 13, Water Power, 5, Mech. 10 Mechanics 15, Engineering Construction, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8. Mining 11, 5, Min. 10 Mining 13, Thesis, 2, Min. 10f

Second Semester

Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Mechanics 16, Mine Plant Design, 10, Mech. 15 Metallurgy 12, Special Problems, 4, Met. 7 Mining 12, 5, Min. 11 Mining 14, Thesis 12, Min. 13

FOUR-YEAR COURSES

JUNIOR YEAR

First Semester

Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11 Geology 73, Historical and Economic Geology, 3, Geol. 106, 1b Mechanics 9, 5, Math. 8 Mechanics 11, Mine Plant, 3, Math. 8 Metallurgy 105, Base Metals, 4, Met. 4

Mining 7, Ore Dressing, 5, Geol. 106

Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Mech. 10 Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 10, 5, Min. 9

Mining 10, 5, Mini. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15 Underground Mining Work, beginning about June 1

SENIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12 Electrical Engineering 53, Electric Power, 5, Physics 3, 4 Geology 111, Ore Deposits, 4, Geol. 106 Mechanics 13, Water Power, 5, Mech. 10 Mechanics 15, Engineering Construction, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8 Mining 11, 5, Min. 10 Mining 13, Thesis, 2, Min. 10f

Second Semester

Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21
Geology 112, Problems in Ore Deposits, 4, Geol. 111
Metallurgy 12, Special Problems, 4, Met. 7
Mechanics 16, Mine Plant Design, 10, Mech. 15
Mining 12, 5, Min. 11
Mining 14, Thesis, 12, Min. 13

SCHOOL OF MINES

COURSES LEADING TO THE DEGREE OF E.M. (GEOLOGY)

JUNIOR YEAR

First Semester

Geology 73, Historical & Economic Geology 3, 106, 1b
Geology 57, Paleontology 3, 1b
German 15 or 17, 3, German 16 for 17

or

French 1 or 3, 3, French 2 for 3
Metallurgy 155, Metallography 4
Mining 9, 5, Min. 6

Elective 6 to 10

Second Semester

Geology 124, Structural and Metamorphic Geology 3, 73
Geology 58, Paleontology 3, 57
German 16 or 18, 3 German 15 or 17

or

French 2 or 4, 3, French 1 or 3
Metallurgy 156, Metallography 4, 155
Mining 10, 5, Min. 9
Mining 4, Mine Mapping 6, Min. 2f
Elective 3
Field work to be arranged

SENIOR YEAR

First Semester

Geology 111, Ore Deposits 4, 73
Geology 151, Advanced General Geology, 3
Geology 113, Laboratory course in Economic Geology, 4, with 111
German 17 or 23, 3, German 16 or 18
or
French 3 or 5, 3, French 2 or 4
Mining 11, 5, Min. 10

Thesis, 2

Elective 3

Second Semester

Geology 112, Problems in Ore Deposits 4, Geol. 111

- Geology 152, Advanced General Geology, 3
- Geology 144, Construction and Interpretation of Geologic Maps, 3, Geol. 111
- Geology 138, Testing of Economic Minerals, 3
- German 18 or 24, 3, German 17 or 23

or

French 4 or 6, 3, French 3 or 5

Mining 12, 5, Min. 11

Thesis, 4

DEPARTMENT OF MINING ENGINEERING

Mining Engineering extends through the sophomore, junior, and senior years. The subjects given, together with the sequence necessary, are treated in the accompanying outline of the course.

In the senior year, problems in hoisting, hauling, pumping, ventilation, and similar subjects become an important part of the work.

MINE SURVEYING

The work in surveying is given in the sophomore year and is designed solely for mining engineers. The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabi or Vermilion Range. The exact location will be announced in March of each year.

The students will be divided into squads of two to four. Each squad must provide itself with a 6-foot steel tape graduated to hundredths. The duration of the course will be seven weeks ($5\frac{1}{2}$ days of 8 hours each constitute a week). Each student will be required to complete satisfactorily the following exercises and surveys:

1. Chaining and taping

2. Compass work

3. Adjustment and use of wye and dumpy levels

4. Adjustment of mining transit

5. Reading angles

6. Traverse with transit and steel tape

7. Azimuth traverse with stadia.

8. Determination of meridian, latitude, and time by solar and stellar observations

9. Survey of mining claim according to the regulations of the U. S. Government

10. Measurement of earthwork.

11. Laying out railroad tangents, curves, and crossings

12. Exercises in plane table work and geological surveying

13. The survey of a mine

A full equipment of surveying instruments of the latest and best makes is furnished to each squad for this work.

This is followed by a course in Mine Mapping during the second semester of junior year.

Students who furnish satisfactory evidence of proficiency in this work may be given credit therefor. The department, however, reserves the right in any case to require such students to take a theoretical or a practical examination or both.

SCHOOL OF MINES

FIELD WORK IN MINING

Sophomore Year

After the close of the field work in Geology (last two weeks in June), members of the sophomore class are required to engage for six weeks in underground mining work on the Minnesota or Michigan iron ranges, for which they may receive wages.

Junior Year

Upon termination of the junior field work in Metallurgy (about May 15), the members of the junior class, who are candidates for the degree of Engineer of Mines, are required to devote two weeks to the study of mine plant and mine operation under the direction of the department. This work will be given in one of the leading western metal mining districts, exact location to be announced in April of each year. Thereafter, during the months of June, July, and August, the student is required to spend at least six weeks in actual undeground mining work in the West, for which he may receive wages. The department will render all possible assistance in locating students in the camps of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must in person submit this diary to the department on the date of the reopening of field work. In judging the character of the student's field work, equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 7, 1915. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering Field Work in Mining and Metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: Metallurgy, September 7-14, inclusive; Mining, September 15-27.

On September 27 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn to scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before September 27. These reports shall become the property of the School.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reason, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

ORE DRESSING

The lectures and recitations in Ore Dressing extend through the second semester of the junior year, and comprise the detailed study of ore dressing and concentrating machinery, together with the study of typical combinations of dressing machines as found in the several mining districts of the United States. In connection with the theoretical work, the ore dressing and testing plant of the School is utilized for practical illusrations.

COURSES IN METALLURGY

COURSES LEADING TO THE DEGREE OF MET. E.

FIVE-YEAR COURSES

JUNIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12

Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11

Geology 111, Ore Deposits, 4, Geol. 106

Mechanics 9, 5, Math. 8

Mechanics 11, Mine Plant, 3, Math. 8

Mining 7, Ore Dressing, 5, Geol. 106

Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Mech. 10

Geology 112, Problems in Ore Deposits, 4, Geol. 111

Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

 Field Work. Months of May, June, July and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15 Underground Mining Work, beginning about June 1

SENIOR YEAR

First Semester

Electrical Engineering 53, Electric Power, 5, Physics 3, 4 Mechanics 13, Water Power, 5, Mech. 10-

Mechanics 15, Engineering Construction, 5, Mech. 10

Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8

Metallurgy 11, Special Problems, 8, Met. 106, Min. 8

Metallurgy 109, Electrometallurgy, 3, Met. 106

Second Semester

Chemistry 144, Electrochemistry, 5, Chem. 102 Chemistry 24, Iron and Steel Analysis, 7, Chem. 12 Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Mechanics 18, Mill and Smelter Design, 10, Mech. 15 Metallurgy 152, Metallography, 6, Met. 106

1

Metallurgy 12, Special Problems, 4; Met. 7 Metallurgy 14, Thesis, 10, Met. 11

FOUR-YEAR COURSES

JUNIOR YEAR

First Semester

Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11 Geology 73, Historical and Economic Geology, 3, Geol. 105, 1b Mechanics 9, 5, Math. 8 Mechanics 11, Mine Plant, 3, Math. 8 Metallurgy 105, Base Metals, 4, Met. 4 Mining Engineering 7, Ore Dressing, 5, Geol. 106 Mining Engineering 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Mech. 10 Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15 Smelter Work, beginning about June 1

SENIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12

Electrical Engineering 53, Electric Power, 5, Physics 3, 4

Mechanics 13, Water Power, 5, Mech. 10

Mechanics 15, Engineering Construction, 5, Mech. 10

Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8

Metallurgy 11, Special Problems, 8, Met. 106, Min. 8

Metallurgy 109, Electrometallurgy, 3, Met. 106

Second Semester

Chemistry 144, Electrochemistry, 5, Chem. 102 Chemistry 24, Iron and Steel Analysis, 7, Chem. 12 Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Mechanics 18, Mill and Smelter Design, 10, Mech. 15 Metallurgy 152, Metallography, 6, Met. 106 Metallurgy 12, Special Problems, 4, Met. 7 Metallurgy 14, Thesis, 10, Met. 11

SCHOOL OF MINES

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use. The practical work consists in visits to smelting and refining works which are accessible. The work in Metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags are shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their reports in detail. This work is offered to students completing the necessary courses in Mineralogy and Chemistry.

ORE TESTING

The lectures treat of the use and purposes of all the machinery connected with the subject, supplemented by detailed drawings. There are complete testing works, connected with the department where the student may see the working of, and handle for himself crushers, rolls, Huntington mill, concentrating machinery, such as vanners, buddles, jigs, pan for amalgamation, settlers, reverberatory furnaces for oxidizing and oxidizing-chloridizing roasts, leaching and chlorination plants, as well as sizing apparatus and hydraulic separators. Sufficiently large amounts of ore are given to make the necessary tests upon the different machines and the students report the best method of treatment. The first semester of the senior year is devoted to instruction and laboratory work, and is required of students both in Mining and Metallurgy.

The ore-testing works meet educational, as well as commercial, needs. *Educational.*—The ore-testing plant acquaints the student with the construction and manipulation of the principal typical machines used in the leading ore-dressing establishments of the country. It is here that students in Mining and Metallurgical Engineering get the requisite practical experience. They handle all machines and operate on sufficiently large amounts of material to determine the methods best suited to a given ore to extract the largest amount of metal with the least possible loss.

Commercial.—Ore-testing works are an important factor in mining and metallurgical projects. The commercial object is to determine the best method of treating a given ore so as to yield the largest percentage of the metal it contains at the least possible cost. Samples varying from 500 pounds to car-load lots can be treated by various methods.

As the funds appropriated for the crection of such a plant were sufficient to purchase only the necessary machinery, the business men of Minneapolis generously provided a suitable building. This building, 94 by 66 feet, is built of brick and stone.

Machinery.-The plant contains all the machinery necessary to illustrate the various processes of ore testing, viz., a Bridgman mechanical sampler size B; a link belt bucket elevator; a pulley feeder complete; a pair of 12¹/₂ by 12 geared rolls complete; a four compartment spitzkasten; a three compartment Hartz jig; a Collum jig complete with cone for driving; a three and a half foot Huntington mill complete; a three-stamp mill, 275-pound stamps; a five-stamp mill, 850-pound stamps; a Challenge automatic feeder for five-stamp battery; a suspended Challenge feeder for three-stamp battery; a Tulloch feeder for Huntington mill; a single deck buddle, twelve feet in diameter : a four-foot plain belt Frue vanner : a Cammett concentrator; a Hooper pneumatic concentrator; a Century drop motion jig; a three-foot amalgamating pan; a five-foot settler; a Bruckner roasting furnace, with fire box on wheels; a chlorination barrel; a battery tightener; a two-horse-power vertical boiler; a steam drying pan; three trommels, with driving arrangement and gears; a one-thousand pound Reedy elevator, complete with worm gear; two overhead crawls, each with eighty-foot track; one-ton pulley block; a quarter-ton pulley block; a scoop car, with flat wheels; two twenty-horse-power electric motors; three MacDermott automatic samplers, etc.

FIELD WORK IN METALLURGY

At the end of the junior year opportunity is given the student to study metallurgical operations at one or more smelting works. This work will begin about May 1. Not over two weeks' time will be devoted to this work.

Upon termination of the junior field work in Metallurgy and two weeks in Mining (not later than June 1), the members of the junior class who are candidates for the degree of Metallurgical Engineer, are required to spend at least six weeks in practical work in one or more of the smelters of the West, for which they may receive wages. The department will render all possible assistance in locating students in the camps of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must, in person, submit this diary to the department on date of reopening of field work. In judging the character of the student's field work equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 7, 1915. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering field work in Metallurgy and Mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: Metallurgy, September 7-14, inclusive; Mining, September 15-27.

On September 27 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with sketches drawn to scale covering all the metallurgical and milling operations, together with details of plant and equipment. Final registration will not be allowed until after final report on field work is made. All final reports, therefore, must be presented on or before September 27. These reports shall become the property of the School.

METALLOGRAPHY

Courses in Metallography are offered to seniors who are candidates for the degree of Metallurgical Engineer, students in the Colleges of Science, Literature, and the Arts, Engineering, Chemistry, and the Graduate School.

These courses deal with the microscopic examination of metals, alloys, and ores. The lectures treat of and describe the apparatus used in connection with this subject, the methods of preparing specimens, the physical, chemical, and metallurgical principles involved, and the interpretation of the results of microscopic examination. A collection of specimens, micro-photographs, and lantern slides covering wrought iron, low carbon, structural, rail, and tool steels, brasses, bronzes, and other industrial alloys are available for study and comparison. The laboratory course includes the microscopic and pyrometric study of metals, alloys, and ores. The laboratory is equipped with microscopes, electric and portable gas furnaces, and pyrometers of the latest and improved types. A special dark room is available for the preparation of microphotographs.

DEPARTMENTAL STATEMENTS

CHEMISTRY

Professors George B. Frankforter, Charles F. Sidener; Assistant Professor Francis C. Frany; Instructors Earl Pettijohn, Woldemar M. Sternberg, Sterling Temple.

COURSES

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
5.	Gen. & Anal. Chemistry	3	2	All Fr.	
6.	Gen. & Anal. Chemistry	1	б	All Fr.	5
11.	Quantitative Analysis	1	6	All Soph.	б
12.	Quantitative Analysis	1	6	All Soph.	11
24.	Iron & Steel Analysis	1	6	Sr. Met. E.	12
25.	Ore & Slag Analysis	1	б	Sr. E. M. & Met. E.	12
144.	Electrochemistry	1	4	Sr. Met. E.	12

- 5-6. GENERAL AND ANALYTICAL CHEMISTRY. An introduction to descriptive, physical, and metallurgical chemistry and qualitative analysis. FRANKFORTER, TEMPLE, and Assistants.
- 11-12. QUANTITATIVE ANALVSIS. The course includes a general discussion of quantitative methods, with laboratory work in gravimetric analysis, first semester, followed by a discussion of standard solutions and the necessary stoichiometric calculations with laboratory work in volumetric analysis, second semester. SIDENER, PETTIJOHN, STERNBERG, and Assistants.
- 24. IRON AND STEEL ANALYSIS. Includes technical methods for the determination of the common constituents of iron ores, iron, and steel, with training in rapid work. SIDENER, PETTIJOHN, and STERNBERG.
- 25. ORE AND SLAG ANALYSIS. Rapid technical method for the determination of certain constituents in ores and slags. SIDENER, PETTIJOHN, and STERNBERG.
- 144. ELECTROCHEMISTRY. A discussion of electro-analytical methods and industrial electrochemical processes, and their underlying principles. FRARY.

DRAWING AND DESCRIPTIVE GEOMETRY

Professor William H. Kirchner; Instructors Robert W. French, Frank B. Rowley.

COURSES

	Liceb. C	n nun.		
No.			Required of	Prereq. courses
11.	Engineering Drawing	10	All Fr.	
12.	Engineering Drawing	8	All Fr.	11
13.	Descriptive Geometry 2		All Soph.	12, Math. 6
14.	Drafting	4	All Soph.	13
		20)	

- 11. ENGINEERING DRAWING. Sketching, lettering, representation, parallel and radial projection, elements of engineering, representation of details of machines and structures, interpretation of working drawings. KIRCHNER, FRENCH.
- 12. ENGINEERING DRAWING. Continuation of Course 11 as outlined above. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. Maps and sketches. Brush and pen conventions. Row-LEY, FRENCH.
- 13. DESCRIPTIVE GEOMETRY. Projection: central and special cases, principles and applications, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems. KIRCHNER.
- 14. DRAFTING. Graphics, machine drafting, and structural drafting. Instruction in drafting room methods. FRENCH.

ELECTRICAL ENGINEERING

Professor George D. SHEPARDSON; Assistant Professor William T. RYAN.

COURSES

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
53.	Electric Power	2	2	Sr. E. M. & Met. E.	Physics 3, 4

53. ELECTRIC POWER. Elements of theory and practice of electrical measurements, wiring, dynamos, motors, and electric lighting. RYAN.

EXPERIMENTAL ENGINEERING

Professor William H. Kavanaugh; Assistant Professors Charles F. Shoop, Franklin R. McMillan.

COURSES

	Lect. or	Lab.		
No.	Title rec. hrs.	hrs.	Required of	Prereq. courses
21.	Steam Laboratory	4	Jr. E. M. & Met. E.	With Math. 11
22.	Strength of Materials	4	Jr. E. M. & Met. E.	With Math. 10
24.	Experimental Laboratory	4	Sr. E. M. & Met. E.	21

- 21. STEAM LABORATORY. Exercises in valve setting, indicator practice, calibration of steam gauges, efficiency of screws and hoists. SHOOP.
- 22. STRENGTH OF MATERIALS. Laboratory work, investigating the strength and physical qualities of iron, steel, brass, copper, belting, chains, beams, brick, and stone. McMILLAN.
- 24. EXPERIMENTAL LABORATORY. Hydraulic measurements. Calibration of weirs, nozzles, meters, and other hydraulic apparatus, calorimetry; tests of pumps, engines, and boilers. KAVANAUGH.

GEOLOGY AND MINERALOGY

Professor William H. Emmons; Associate Professor Clinton R. Stauffer; Assistant Professor Frank F. Grout; Instructors A. Walfred Johnston, Edgar K. Soper; Assistants T. M. Broderick, J. P. Goldsberry.

COUPERS

	COURSES							
		Lect. of	r Lab.					
No.	. Title	rec. hrs	. hrs.	Required of	Prereq. courses			
1b.	General Geology 🖻	3		All Soph.	24			
1f.	Field Work		2 wks	All Soph.	1b and 105			
23.	Elements of Mineralogy	4	4	All Fr.				
24.	Descriptive Mineralogy	2	2	All Fr.	23			
57.	Paleontology	3		Jr. E. M. (Geol.)	1b			
58.	Paleontology	3		Jr. E. M. (Geol.)	57			
73.	Histor. & Econ. Geology	. 3		All Jr.	1b and 105			
105.	Elements of Rock Study		4	All Soph.	24			
106.	Petrology		4	All Soph.	105b			
111.	Ore Deposits	4		Sr. E. M. & E. M. (Geol.)	106			
112.	Problems in Ore Deposits.		4	Sr. E. M. & E. M. (Geol.)	111			
113.	Laboratory Course in Eco	n.						
	Geology		4	Sr. E. M. (Geol.)	With 111			
124.	Struct. & Metamorph. Geo	ol. 3		Jr. E. M. (Geol.)	73 and 105			
138.	Testing Econ. Minerals		4	Elective	24 and 73			
144.	Construction & Interpret	a-						
	tion of Geologic Maps		4	Elective	73			
151.	Advanced General Geology	y. 3.		Sr. E. M. (Geol.)	73			
152.	Advanced General Geology	y. 3	• •	Sr. E. M. (Geol.)	151			

- 1b. GENERAL GEOLOGY. A synoptical treatment of materials of the earth and of geologic processes. Physiographic, dynamic, and structural geology, with a brief introduction to Historical Geology. JOHNSTON.
- 1f. FIELD WORK. A two-week excursion to the Iron Ranges for practice in field methods, such as tracing contacts, working out structures and constructing and interpreting geologic maps. JOHNSTON and Assistants.
- 23. ELEMENTS OF MINERALOGY. The crystal systems; morphological, physical, and chemical character of minerals; occurrence, genesis, and uses of minerals; classifications and description of common minerals. Determinative work in laboratory, blowpipe analysis, sight identification. BRODERICK, GOLDSBERRY.
- 24. DESCRIPTIVE MINERALOGY. A continuation of Course 23, special attention being given to metalliferous and rock-forming minerals. Laboratory determination and sight identification. The use of the goniometer and microscope. Laboratory work, reference reading, and field excursions. BRODERICK, GOLDSBERRY.
- 57. PALEONTOLOGY. A study of fossil forms with special reference to those of geological importance. STAUFFER.
- 58. PALEONTOLOGY. Faunas and their correlation. A continuation of Course 57. STAUFFER.

- 73. HISTORICAL AND ECONOMIC GEOLOGY. (a) Historical Geology. The geologic history of North America, with special references to its syngenetic mineral deposits. (b) Economic Geology. A study of the non-metallic minerals of economic value, and discussions of the geologic guides to prospecting for these deposits. EMMONS, SOPER.
- 105. ELEMENTS OF ROCK STUDY. The occurrence and genesis of igneous, sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and alteration. The classification and methods of identification and description of rocks. BRODERICK.
- 106. PETROLOGY. The identification and study of minerals and rocks by optical methods; the study of igneous rocks, crystalline schists, and metamorphic rocks. The origin and classification of rocks. BROD-ERICK.
- 111. ORE DEPOSITS. The nature, distribution, and genesis of ore deposits of the United States; relations of ore deposits to geologic structure; the deformation and superficial alteration of ore deposits. EMMONS, SOPER.
- 112. PROBLEMS IN ORE DEPOSITS. Field excursions, map work, lectures on field and laboratory methods. EMMONS, SOPER.
- 113. LABORATORY COURSE IN ECONOMIC GEOLOGY. A study of ores, rocks and geological structure of selected American and foreign mining districts. Correlated reading. EMMONS.
- 124. STRUCTURAL AND METAMORPHIC GEOLOGY. The conditions, processes, and results of metamorphism; structural features resulting from deformation under varying conditions of load. JOHNSTON.
- 138. TESTING ECONOMIC MINERALS. Methods of determining quality of mineral deposits, described and illustrated by laboratory tests of coal, oil, building stone, and metallic ores.
- 144. CONSTRUCTION AND INTERPRETATION OF GEOLOGIC MAPS. Hours to be arranged. Methods of geological examination; problems in construction and interpretation of geologic maps and sections, with special reference to underground mapping of metalliferous areas; field practice in plane table methods of topographic and geologic mapping. SOPER,
- 151. ADVANCED GENERAL GEOLOGY. Geologic processes and their results; development of the North American continent. STAUFFER.
- 152. ADVANCED GENERAL GEOLOGY. A continuation of Course 151. STAUFFER.

GERMAN

Professor Carl Schlenker; Assistant Professors Oscar C. Burkhard, Walter R. Myers; Instructors J. Theodore Geissendoerfer, Richard Wischkaemper.

COURSES

		Lect. or		
No.	Title	ree. hrs.	Required of	Prereq. courses
15.	Beginning German	3	Jr. E. M. (Geol.)	
16.	Beginning German	3	Jr. E. M. (Geol.)	15
17.	Scientific Intermediate	3	Jr. or Sr. E. M. (Geol.)	16
18.	Scientific Intermediate	3	Jr. or Sr. E. M. (Geol.)	17
23.	Advanced Scientific	3	Sr. E. M. (Geol.)	18
24.	Advanced Scientific	3	Sr. E. M. (Geol.)	23

- 15-16. BEGINNING. Pronunciation, grammar, conversation, and composition; selected reading in easy prose and verse. BURKHARD.
- 17-18. SCIENTIFIC INTERMEDIATE. This course is arranged to meet the needs of students in the School of Mines. Text: Merckel's *Bilder aus der Ingenieurtechnik*. BURKHARD, MYERS.
- 23-24. ADVANCED SCIENTIFIC READING. Reading of monographs and periodicals. GEISSENDOERFER, WISCHKAEMPER.

MECHANICAL ENGINEERING

Professor JOHN J. FLATHER; Assistant Professor S. CARL SHIPLEY; Instructors Peter Peterson, Edward Quigley, William H. Richards.

COURSES

No.	Title	Lab. hrs.	Required of	Prereq. courses
1a.	Pattern Making	6 (9 wks)	1st-yr. E. M. & Met. E.	
1b.	Foundry	6 (9 wks)	1st-yr. E. M. & Met. E.	
1c.	Forge	6 (9 wks)	1st-yr. E. M. & Met. E.	
1d.	Machine & Bench Work	6 (9 wks)	1st-yr. R. M. & Met. E.	

- 1a. PATTERN MAKING. Use of tools, lathe and bench work, making of timber joints, core boxes and flasks. RICHARDS, UBRICH.
- 1b. FOUNDRY. Molding, core making, mixing and casting metals. PETER-SON.
- 1c. FORGE. Use of tools, forging, welding, tool dressing and tempering. QUIGLEY.
- 1d. MACHINE AND BENCH WORK. Use of tools and elementary machine operations. Shipley.

METALLURGY

Professors William R. Appleby, Peter Christianson, Levi B. Pease; Assistant Professor Samuel L. Hoyt.

COURSES

	L	ect. or	Lab.		
No. Titl	le r	ec. hrs.	hrs.	Required of	Prereq. courses
2. Assaying	•••••	. 4	8	All Fr.	Chem. 5, Min- eral. 23
3. Gen. Met. & In	ron and Steel	l. 3		Soph. E. M. & Met. E.	2, Chem. 6

		Le	ct. or		
· No.	Title	rec	hrs.	Required of	Prereq. courses
4.	Wrought Iron & Steel	3		Soph. E. M. & Met. E.	3
6f.	Field Work in Metallurgy	•••	10 dys	s Jr. E. M. & Met. E.	Satisfactory completion of Jr. year
7.	Ore Testing	2	8	Sr. E. M. & Met. E.	106, Min. 7
8.	Metallurgy	3		Soph. E. M. (Geol.)	2
11.	Special Problems in Met		8	Sr. Met. E.	106, Min. 7
12.	Special Problems in Met		4	Sr. E. M. & Met. E.	106, Min. 7
14.	Thesis and Specifications		10	Sr. Met. E.	11
105.	Met. of Base Metals	4		Jr. E. M. & Met. E.	4
106.	Met. of Precious Metals	4		Jr. E. M. & Met. E.	105
109.	Electrometallurgy	3		Sr. Met. E.	106
152.	Metallography	2	4	Sr. Met. E.	106
153.	Metallography	3	4	Elective	Chem. 12,
					Phys. 1 and 2
154.	Metallography	3	4	Elective	153
155.	Metallog. for Geologists	2	2	Elective	Geol. 4, 5 & 18
156.	Metallog. for Geologists	2	2	Elective	155
. 157.	Metallog. for Engineers	2	4	Elective	Mech. Eng.
					3 and 4
160.	Metallog. for Chemists	2	2	Elective	Chem. 12,
					Phys. 1 and 2
162.	Ad. Metallog. for Eng	2	4	Elective	157
163.	Dental Metallog	3		Elective	
201.	Ad. Metallog	Tol	be ar.	Elective	154
202.	Ad. Metallog	To	be ar.	Elective	201

- Assaying. Determination of values of ores, metallurgical products, and bullion. Appleby and Assistants.
- 3. GENERAL METALLURGY AND METALLURGY OF IRON. Including the subjects of combustion, fuels, refractory materials and furnaces. Lectures and recitations on metallurgy of iron. CHRISTIANSON.
- 4. METALLURGY OF WROUGHT IRON AND STEEL. Consideration of the principles of manufacture, details of plant construction, and chemical and physical phenomena. CHRISTIANSON.
- 6f. FIELD WORK IN METALLURGY. Study of metallurgical operations at smelters and mills. Detailed report is required covering plants visited. CHRISTIANSON, PEASE.
- 7. ORE TESTING. Determinations of methods of ore treatment, stamping, concentration, cyanidation, roasting, chlorination, lixiviation, and amalgamation. APPLEBY and Assistants.
- 8. METALLURGY. A short course covering the metallurgy of the principal metals. PEASE.
- 11. SPECIAL PROBLEMS IN METALLURGY. Research work preparatory to thesis. AppLEBY and Assistants.
- 12. Special Problems in Metallurgy. Pease.
- 14. THESIS AND SPECIFICATIONS. Detailed investigations of ore treatment.

with report including designs and specifications for suitable plants. APPLEBY, COMSTOCK, and Assistants.

- 105. METALLURGY OF THE BASE METALS. Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining methods. PEASE.
- 106. METALLURGY OF THE PRECIOUS METALS. Gold, silver, and platinum. Methods and principles of cyanidation, chlorination, amalgamation, and lixiviation as applied to the treatment of the above. PEASE.
- 109. ELECTROMETALLURGY. A study of the reduction of ores, refining of metals, and production of metals by electrolytic deposition; and the use of the electric furnace for smelting of ores, refining metals, and the manufacture of refractory alloys. CHRISTIANSON.
- 152. METALLOGRAPHY. A study of the microstructure of metals and alloys as affected by heat and industrial treatments, together with the influence of changes of structure on their properties. Special attention is given to siderurgic products. Hoyt.
- 153-154. METALLOGRAPHY. The microscopical and thermal analysis of metals and alloys. Metallographic technique. The physical and chemical properties of metals and alloys. The commercial alloys, their heat and other industrial treatments. The metallography of iron and steel. Hoyt.
- 155-156. METALLOGRAPHY APPLIED TO THE STUDY OF GEOLOGY. Application of metallographical principles and methods of research to geology, with special attention to the genesis of rocks and ore bodies. The microscopical examination of opaque minerals by reflected light. Hoyr.
- 157. METALLOGRAPHY FOR ENGINEERING STUDENTS. Metallurgy of iron and steel. Microscopic and thermal analysis of steel and cast iron; heat and mechanical treatment. The properties of iron and steel as affected by composition and treatment. Laboratory work. Hoyr.
- 160. METALLOGRAPHY FOR CHEMICAL STUDENTS. The preparation of metallic alloys; their microscopical and thermal analysis. Steel and other commercial alloys with particular reference to chemical metallurgy. Corrosion of steel and non-ferrous alloys. Metallography applied to analytical chemistry. Hoyt.
- 162. ADVANCED METALLOGRAPHY FOR ENGINEERING STUDENTS. Metallography applied to engineering practice; machine design, structural engineering, electrical engineering. Engineering specifications involving the use of metals and alloys. Hoyt.
- 163. DENTAL METALLOGRAPHY. Study of the dental alloys from the standpoint of metallography. Hoyr.

201-202. ADVANCED METALLOGRAPHY. Technical and scientific research. The study of steel rails, automobile and locomotive parts, tool steels, etc. Special problems in metallography with outside reading. Seminar work on the recent advances in metallography. Hoyr.

MINE PLANT AND MECHANICS

Professor Elting H. Comstock; Assistant Professor Edwin M. Lambert; Instructor Edward W. Davis.

COURSES

	1	Lect. or	Lab.		
No.	Title 1	ec. hrs.	hrs.	Required of	Prereq. courses
1.	Computation & Mensuratio	n 3		All 1st-yr. students	
3.	Mine Accounting		б	All 1st-yr. students	
4.	Algebra	. 4		All 1st-yr. students	1
5.	Algebra & Trigonometry	. б		All Fr.	1 & 2
6.	Spherical Trig. & Anal. Geon	n. 6		All Fr.	5
7.	Calculus	. 5		All Soph.	6
8.	Calculus	. 3		All Soph.	7
9.	Mechanics	. 5		All Jr.	8
10.	Mechanics	. б		All Jr.	9
11.	Mine Plant	. 3		Jr. E. M. & Met. E.	8
12.	Mine Plant	. 6		Jr. E. M. & Met. E.	11
13.	Hydraulics & Water-Power	. 5		All Sr.	10
15.	Engineering Construction	. 1	4	Sr. E. M. & Met. E.	10
16.	Mine Plant Design		10	Sr. E. M.	15
18.	Mill and Smelter Design		б	Sr. Met. E.	15

- 1. COMPUTATION AND MENSURATION. Demonstrations of most important theorems of solid geometry. Volumes, approximate volumes, prismoidal formula, etc. Approximate computation, graphs, and graphical computation, logarithms and logarithmic computation, areas and approximations of areas, use of slide rule. DAVIS.
- 3. ELEMENTARY MINE ACCOUNTING. Elementary accounting in general; applications to mine accounts; primary records, labor, supply, mine and mill products, and fund sheets; secondary records, invoice, labor and supply, mine and mill cost sheets, trial balance. LAMBERT.
- 4. ALGEBRA. Equations with one, two, or more unknown quantities, inequalities, involution and evolution, theory of exponents, surds, quadratic equations both numerical and literal, equations with one or more unknown quantities that can be solved by means of quadratic equations, progressions. DAVIS.
- 5. ALGEBRA AND TRIGONOMETRY. Functions and functional notation, factor and remainder theorems, factors and values of functions, determinants, development of functions, theory of equations, permutations and combinations; trigonometric ratios, right triangles, general definitions of trigonometric functions, analytic relations, addition formulas, trigonometric equations, and oblique triangles. DAVIS.
- 6. SPHERICAL TRIGONOMETRY AND ANALYTICAL GEOMETRY. General proper-

36

MINING ENGINEERING

ties and solution of spherical triangles; systems of coördinates, loci, equations and properties of the straight line, transformation of coördinates, equations and properties of conics, general equations of the second degree, higher plane curves, space coördinates, point, plane, straight line, quadric surfaces. DAVIS.

- 7. CALCULUS. Nature of differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, expansion of functions, indeterminate forms, partial derivatives, change of variable. LAMBERT.
- 8. CALCULUS. Elementary integration, undetermined coefficients, rational fractions, rationalization, formulas of reduction, hyperbolic functions, some differential equations of mechanics. LAMBERT.
- 9. MECHANICS. Composition and resolution of forces, laws of equilibrium, practical applications, rectilinear motion, circular motion, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy; elementary mechanics of materials. LAMBERT.
- 10. MECHANICS. Mechanical and elastic properties of materials of construction; beams, shafts, columns, reinforced concrete, hollow cylinders and spheres, rollers, plates; theory of internal stress. LAMBERT.
- 11-12. MINE PLANT. Discussion of the machinery and appurtenances employed in the equipment of mines. Air compression, mechanical features of hoisting, pumping, ventilation, underground transportation. Electricity applied to mining. COMSTOCK.
- 13. HYDRAULICS AND WATER-POWER. Laws of the equilibrium, pressure, and flow of liquids, estimation of power to be developed at a power site, dams and appendages, theory of water wheels and turbines, speed control, power-house equipment, transmission. Comstock.
- 15. ENGINEERING CONSTRUCTION. Theory of structures, loading, analytic and graphic resolution of stresses in framed structures, stresses in mining structures, design of mining structures. COMSTOCK.
- 16. MINE PLANT DESIGN. A study of power possibilities, costs, etc., and designs of a power plant, surface equipment, and structures for a mine. COMSTOCK.
- 18. MILL AND SMELTER DESIGN. A study of the construction and mechanical equipment of mills and smelters in connection with thesis work. COMSTOCK.

MINING ENGINEERING

Professors George J. Young, Edward P. McCarty; Instructors Ervin W. McCullough, John F. Murphy.

SCHOOL OF MINES

COURSES

		Lect. or	Lab.		
No.	, Title ,	rec. hrs.	hrs.	Required of	Prereq. courses
1.	Mine Surveying,	3		All Soph.	Math. 6
2.	Mine Surveying	3		All Soph.	1 '
	Field Work				2
4.	Mine Mapping		6	All Jr.	2f
б.	Mining	1		All Soph.	
7.	Ore Dressing	5 .		All Jr.	
9.	Mining	5		All Jr.	6
10.	Mining	5		All Jr.	9
10f.	Practical Mining		2 wks	All Jr.	Satisfactory
					completion
					of Jr. year
11.	Mining	5		Sr. E. M. & E. M. (Geol.)	10
12.	Mining	5		Sr. E. M. & E. M. (Geol.)	11
13.	Thesis		2	Sr. E. M.J	10f
14.	Thesis		8	Sr. E. M.	13

- 1, 2. MINE SURVEYING. Computation, platting, and problems with special reference to mine surveying. MURPHY.
- 2f. FIELD WORK. Practice in general surveying during the month of May. Practice in underground surveying during the first two weeks of June. This work is given on the Iron Ranges. McCarty, Murphy.
- 4. MINE MAPPING. Mine mapping in accordance with prevalent practice in the western mining districts. Ore and stripping estimates and mine maps based on Mesabi Range practice. MURPHY.
- 6. MINING. Examination and testing, and use of explosives. McCul-LOUGH.
- 7. ORE DRESSING. Examination of ores, crushing, sizing classification, and methods of mechanical separation. McCullough.
- MINING. Occurrence of ore bodies, prospecting, churn and diamond drilling, drilling, blasting, excavation, surface transportation, tunneling and drifting. YOUNG.
- 10. MINING. Shaft-sinking, support of underground excavations, hoisting, drainage, ventilation, underground transportation. Young.
- 10f. PRACTICAL MINING. Study of mining operations. Mine plant and equipment and practical mining work; a mine to be selected by department during months of May, June, July, and August. Young, Comstock, and Assistants.
- 11. MINING. Open pit, quarrying, underground methods, coal mining, mining alluvial deposits. Young.
- 12. MINING. Mine management, mining law, economics of mining, mine examination, mine sanitation and hygiene. Young.
- 13, 14. THESIS. Conference. Design and specifications of mining details required in thesis study. YOUNG.

38

PHYSICS

Professors Henry A. Erikson, Anthony Zeleny;* Instructor Paul E. Klopsteg.

		C	001	SES.		
		Lect. or	Lab.			
о.	Title	rec. hrs.	hrs.	Required of		Prereq. courses
1.	General Physics	3		All Soph.	· · · ·	Math. 6
2.	General Physics	3		All Soph.		1
3.	General Lab. Practice		2	All Soph.		With 1
4.	General Lab. Practice		2	All Soph.		With 2

- 1. GENERAL PHYSICS. Mechanics of solids and fluids, sound and heat. Treatment experimental rather than mathematical; the fundamental principles. ERIKSON, KLOPSTEG.
- 2. GENERAL PHYSICS. Light, electricity, and magnetism. Treatment experimental; the fundamental principles, including those of radioactivity, ionization, X-radiation, and the electrical constitution of matter. ERIKSON, KLOPSTEG.
- 3. GENERAL LABORATORY PRACTICE. Physical measurements in the mechanics of solids and fluids, and in heat and sound, giving the student a knowledge of experimental methods, and an intimate acquaintance with the fundamental facts of the subject. ERIKSON.
- 4. GENERAL LABORATORY PRACTICE. Physical measurements in light, electricity, and magnetism. ERIKSON.

ROMANCE LANGUAGES

Professor Everett Ward Olmsted; Assistant Professor Jules T. Frelin; Instructors E. H. Sirich, Herbert K. Stone; Assistant Homer Desmarais.

COOKSES									
No.	Title	Rec. hrs.	Required of	Prereq. courses					
1.	Beginning French	3	Jr. E. M. (Geol.)						
2.	Beginning French	3	Jr. E. M. (Geol.)	1					
3.	Intermediate French	3	Jr. or Sr. E. M. (Geol.)	2					
4.	Intermediate French	3	Jr. or Sr. E. M. (Geol.)	3					
5.	Survey French Lit	3	Sr. E. M. (Geol.)	4					
6.	Survey French Lit	3	Sr. E. M. (Geol.)	5					

- 1-2. BEGINNING FRENCH. Stress on accurate pronunciation, reading, reading vocabulary, and the essentials of grammar. Daily oral and written exercises (dictation and reproduction in French). DESMARAIS.
- **3-4.** INTERMEDIATE. French grammar, composition, and reading; increased use of French in the classroom. Selections from modern prose and poetry. FRELIN, DESMARAIS.
- 5-6. GENERAL SURVEY OF FRENCH LITERATURE. Lectures, recitations, and assigned readings. Designed to cover the whole period in historical outline. Selections from representative authors. OLMSTED.

*Absent on leave, 1915-16.

No

STUDENTS

SENIORS-15

Butler, W. Victor, Minneapolis Christenson, Alfred, Madelia Clark, Malcolm W., Northfield Coller, Walter A., St. Paul Collins, Leon T., Pine Island Haugan, Albert C., Hanska Harmon, Sydney, St. Paul Heilig, Louis S., Minneapolis

Abrahamson, Hjalmar, Wadena Aronson, Sam, St. Paul Buresch, Charles E., Lakefield Craig, John J., Minneapolis Davies, Fred A., Minneapolis Dovre, Adolph, Sleepy Eye

Anderson, Edwin H., Oakes, N. D. Breslauer, Mirton B., Spokane, Wash. Capser, Leo W., St. Paul Cassily, Thomas E., St. Paul Coryell, Lewis S., Osceola, Wis. Dennis, Richard C., Ashland, Wis. Elson, William H., St. Paul Ernster, Omer F., Brainerd Fearing, Edward J., Little Falls, Minn. Frank, Harry, Minneapolis

Ainsworth, Robert E., Minneapolis Allard, Raymond W., St. Paul Armstrong, Harold H., Minneapolis Bailey, A. Kittredge, Minneapolis Caswell, Harlan H., Minneapolis Clark, Fred E., Minneapolis Copeland, William A., St. Paul Cowin, Percy G., Minneapolis Cutler, F. Á., Jr., Minneapolis Dane, Carleton M., St. Paul Dowdell, Ralph L., St. Paul Foley, Lyndon L., Minneapolis Gannett, Roger W., Minneapolis Iauser, Karl W., St. Paul Johnson, Fred C., Willmar Kerr, Charles D., Little Falls Neerland, Herman, Sanchez, Richard M., Tarma, Peru, S. A. Urquhart, George K., St. Paul Wade, Henry R., Hopkins Williams, Paul S., Minneapolis

JUNIORS-12

*Field, Reginald, Mobridge, S. D. Krogh, Alvin T., Minneapolis Lee, Oscar, St. Paul McDermid, Archie J., Duluth McHardy, Roy H., Minneapolis Nord, Harry H., Ashland, Wis.

SOPHOMORES-20

Hicks, John, St. Paul Levorsen, A. Irving, Fergus Falls Kwong, Yih-Kum, Shanghai, China Nichols, Clifford R., Buhl, Minn. Peterson, Paul A., St. Paul Shattuck, Warner A., Bisbee, Ariz. Strand, Harry W., Marine Mills Sweetman, Edwin A., Aitkin Wallace, Carleton S., Minneapolis Woodruff, John J., Minneapolis

FRESHMAN-30

Hauser, Louis A., St. Paul Hurley, Frank W., St. Paul Ingersoll, Guy E., Hibbing Jerrard, Walter L., St. Cloud Johnson, Russell V., Lanesboro Kulberg, Sam, Minneapolis Moga, John A., St. Paul Quinn, Howard E., Melrose Ringwood, Thomas E., Ashland, Wis. Rosenberg, Maurice M., Minneapolis Sinclair, Gilbert, Minneapolis Sponberg, Edwin C., Hibbing Stickney, Robert A., Inglewood, N. J. Sullivan, Daniel C., Stillwater

FIRST YEAR-9

Kersten, Erwin H. W., Minneapolis Rye, Hjalmer, Aurora Scott, Wendell K., St. Cloud Wadsworth, Lawrence H., Minneapolis

Abramson, Jake, Minneapolis Alverson, Miles C., Medford, Wis. Donaghue, Abner J., Minneapolis Hollister, Paul M., Madison, S. D. Hoving, George E., Fergus Falls

*Deceased.

C M 60 u Zmi 1916/17

Zme UNIVERANT OF THE UNIVERANTY OF ILLINOID Bulletin of The University of Minnesota

THE SCHOOL OF MINES

1916-1917

VOL. XIX. NO. 10 MAY 1916

Entered at the Post-Office in Minneapolis as second-class matter Minneapolis, Minn.

	•	1	916	5									19	17						
		J	UL	Y					JAN	NUA	RY					J	UL	Y		
Su	Mo	Tu	W	\mathbf{Th}	Fr	Sa	Su Mo Tu W Th Fr Sa S				Mo	Tu	W	Th	\mathbf{Fr}	Sa				
 9 16 23 30	$3 \\ 10 \\ 17 \\ 24 \\ 31$	 4 11 18 25 	5 12 19 26	 6 13 20 27 	 7 14 21 28 	1 8 15 22 29 	$ \begin{array}{c} 7 \\ 7 \\ $	1 8 15 22 29 	2 9 16 23 30	3 10 17 24 31 	4 11 18 25 	5 12 19 26 	6 13 20 27 	$ \begin{array}{c} 1 \\ 8 \\ 15 \\ 22 \\ 29 \\ \dots \end{array} $	2 9 16 23 30 	$ \begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \\ 31 \\ \dots \end{array} $	4 11 18 25 	5 12 19 26 	6 13 20 27 	7 14 21 28
		AL	GU	ST			FEBRUARY AUGU					ST	ST							
··· 6 13 20 27 	 7 14 21 28 	1 8 15 22 29 	2 9 16 23 30	$ \begin{array}{c} 3 \\ 10 \\ 17 \\ 24 \\ 31 \\ \dots \end{array} $	4 11 18 25 	5 12 19 26 	 4 11 18 25 	5 12 19 26	 6 13 20 27 	 7 14 21 28 	1 8 15 22 	2 9 16 23 	$\begin{vmatrix} 3\\10\\17\\24\\\\\end{vmatrix}$	 5 12 19 26 	 6 13 20 27 	$ \begin{array}{c} 7 \\ 14 \\ 21 \\ 28 \\ $	1 8 15 22 29 	2 9 16 23 30 	3 10 17 24 31 	4 11 18 25
	SI	EPI	EM	BE	R			MARCH					S	EPT	ΓEN	IBE	R			
 3 10 17 24 	$ \begin{array}{c} $	$ \begin{array}{r} 5 \\ 12 \\ 19 \\ 26 \\ \dots \end{array} $	 13 20 27 	 7 14 21 28 	1 8 15 22 29 	2 9 16 23 30 	 4 11 18 25 	 5 12 19 26 	$ \begin{array}{c} 6 \\ 13 \\ 20 \\ 27 \\ $	$ \begin{array}{c} 7 \\ 14 \\ 21 \\ 28 \\ $	1 8 15 22 29 	2 9 16 23 30 	$ \begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \\ 31 \\ \dots \end{array} $	2 9 16 23 30	3 10 17 24	 4 11 18 25 	5 12 19 26	6 13 20 27	 7 14 21 28 	1 8 15 22 29
				BER						PR								BER		
1 8 15 22 29 	2 9 16 23 30 	3 10 17 24 31	4 11 18 25 	5 12 19 26 	6 13 20 27 	7 14 21 28 	1 8 15 22 29 	2 9 16 23 30	3 10 17 24 	4 11 18 25 	5 12 19 26 	6 13 20 27 	7 14 21 28 	 7 14 21 28 	1 8 15 22 29 	2 9 16 23 30 	3 10 17 24 31	4 11 18 25 	5 12 19 26 	6 13 20 27
	N	IOV	EM	BE	-				1	MA'					N	IOV	EM	BE	R	
5° 12 19 26	6 13 20 27	7 14 21 28	$ \begin{array}{c} 1 \\ 8 \\ 15 \\ 22 \\ 29 \end{array} $	2 9 16 23 30	$ \begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \\ \dots \end{array} $	4 11 18 25 	 6 13 20 27	$ \begin{array}{c} 7 \\ 14 \\ 21 \\ 28 \end{array} $	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25 	5 12 19 26 	 4 11 18 25	 5 12 19 26	 6 13 20 27	 7 14 21 28	$ \begin{array}{c} 1 \\ 8 \\ 15 \\ 22 \\ 29 \end{array} $	2 9 16 23 30	$ \begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \\ \\ \end{array} $
The state of the s	Г	DEC	EM	BE	R					UN	E				Г.		EM	BE	R	
··· 3 10 17 24 31	 4 11 18 25 	 5 12 19 26 	 6 13 20 27 	$ \begin{array}{c} 7 \\ 14 \\ 21 \\ 28 \\ $	1 8 15 22 29 	2 9 16 23 30 	$ \begin{array}{c} 3 \\ 10 \\ 17 \\ 24 \\ $	 4 11 18 25 	5 12 19 26	6 13 20 27	 7 14 21 28 	1 8 15 22 29 	$ \begin{array}{c c} 2 \\ 9 \\ 16 \\ 23 \\ 30 \\ \dots \end{array} $	2 9 16 23 30	$ \begin{array}{c} 3 \\ 10 \\ 17 \\ 24 \\ 31 \end{array} $	11 18 25 	 5 12 19 26 	 6 13 20 27 	 7 14 21 28 	1 8 15 22 29

51.8 A

UNIVERSITY CALENDAR

1916-1917

The University year covers a period of thirty-eight weeks. Commencement Day is always the second Thursday in June.

1016			
September	13	Wednesday	Registration closes except for new stu-
			dents
September	13-20	Week	Fees payable except for new students
September	19-26	Week	Examinations for the removal of condi-
			tions (except Colleges of Agriculture
			and Forestry), entrance examinations,
			registration of new students, and pay-
a			ment of fees.
September	27	Wednesday	First semester begins
October	2	Monday	Agricultural College, farm experience
October		3.6	examinations
October	2	Monday Thursday	School of Agriculture, first term begins Senate meeting, 4:00 p.m.
November	5 6	Monday	Dairy School closes
November	7	Tuesday	Election day; a holiday
November	22	Wednesday	Medical School second quarter begins
November	22	Wednesday	Thanksgiving recess begins 9:00 p.m
December	29	Saturday	Dairy School closes
December	4	Monday	Thanksgiving recess ends 8:00 a.m.
December	4-9	Week	Second semester condition examinations.
	т <i>У</i>		Colleges of Agriculture and Forestry
December	4-9	Week	Short course for ice-cream makers
December	.7	Thursday	Senate meeting, 4:00 p.m.
December	22	Friday	Christmas vacation begins 9:00 p.m.
December	22	Friday	School of Agriculture, first term closes
1917			
January	1-б	Week	Farmers' Short Course
January	3	Wednesday	Christmas vacation ends 8:00 a.m.
January	3	Wednesday	School of Embalming begins, eight
			weeks' session
January	9	Tuesday	School of Agriculture, second term be-
-			gins
January	24	Wednesday	Second semester registration closes, ex-
T		1. 1	cept for new students
January	29	Monday	Final examinations begin
January	31	Wednesday	Payment of fees for second semester closes, except for new students
February	I	Thursday	Senate meeting, 4:00 p.m.
February	5-6	Monday-Tues.	Registration and payment of fees for
1 cordary	5-0	Monday-1 des.	new students
			new stauchts

February	7	Wednesday	Second semester begins
February	12	Monday	Lincoln's Birthday; a holiday
February	22	Thursday	Washington's Birthday; a holiday
March	28	Wednesday	School of Agriculture closes
April	2-7	Week	Junior Short Course
April	5	Thursday	Easter recess begins 9:00 p.m.
April	II	Wednesday	Easter recess ends 8:00 a.m.
April	II	Wednesday	Medical School fourth quarter begins
April	16-21	Week	Condition examinations in certain col-
			leges
May	I	Tuesday	Traction Engineering Course begins
May	3	Thursday	Senate meeting, 4:00 p.m.
May	30	Wednesday	Memorial Day; a holiday
June	I	Friday	Final examinations begin 2:00 p.m.
June	7-14	Week	Military Encampment, Fort Snelling
June	9	Saturday	Second semester closes
June	10	Sunday	Baccalaureate service
June	II	Monday	Senior Class Day exercises
June	13	Wednesday	Alumni Day
June	14	Thursday	Forty-fourth Annual Commencement
June	15	Friday	Summer vacation begins
June	18	Monday	Summer Session begins

The University year for 1917-1918 will begin Tuesday, September 18.

Program of Supplementary Examinations

Tuesday,	Sept. 19	9 - 12 a.m.	Mechanics and Mathematics
		2-5 p.m.	Mining Engineering Subjects
Wednesday,	Sept. 20	9 -12 a.m .	Chemistry
		2-5 p.m.	Drawing and Descriptive Geometry
		2-5 p.m.	Mechanical Engineering Subjects
Thursday,	Sept. 21	9 -12 a .m.	Metallurgical Subjects
		2-5 p.m.	Physics
Friday,	Sept. 22	9 -12 a.m .	Electrical Engineering Subjects
		2-5 p.m.	Geology and Mineralogy

THE SCHOOL OF MINES

FACULTY

GEORGE EDGAR VINCENT, Ph.D., LL.D., President 1005 5th St. S. E. CYRUS NORTHROP, LL.D., President Emeritus 519 10th Ave. S. E. WILLIAM R. APPLEBY, M.A., Dean and Professor of Metallurgy 928 5th St. S. E. Professor of Mining OSCAR C. BURKHARD, M.A., Assistant Professor of German 710 E. River Road PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy 217 Union St. S. E. ELTING H. COMSTOCK, M.S., Professor of Mine Plant and Mechanics 1416 7th St. S. E. WILLIAM H. EMMONS, Ph.D., Professor of Mineralogy and Geology 611 11th Ave. S. E. 424 Harvard St. S. E. HENRY A. ERIKSON, Ph.D., Professor of Physics JOHN J. FLATHER, Ph.B., M.M.E., Professor of Mechanical Engineering 315 11th Ave. S. E. GEORGE B. FRANKFORTER, Ph.D., Professor of Chemistry 525 E. River Road JULES T. FRELIN, B.A., Assistant Professor of Romance Languages 1206 5th St. S. E. FRANK F. GROUT, M.S., Assistant Professor of Geology and Mineralogy 617 4th St. S. E. SAMUEL L. HOYT, E.M., Ph.D., Assistant Professor of Metallography 1011 14th Ave. S. E. WILLIAM H. KAVANAUGH, M.E., Professor of Experimental Engineering 124 State St. S. E. WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive Geometry 722 10th Ave. S. E. EDWIN M. LAMBERT, M.E., Assistant Professor of Mine Plant and Me-1086 12th Ave. S. E. chanics EDWARD P. MCCARTY, E.M., Professor of Mining 3615 Lyndale Ave. S. FRANKLIN R. MCMILLAN, C.E., Assistant Professor of Structural Engineering 524 8th Ave. S. E. EVERETT W. OLMSTED, Ph.D., Professor of Romance Languages 901 5th St. S. E. LEVI B. PEASE, M.S., Professor of Metallurgy 1070 16th Ave. S. E. WILLIAM T. RYAN, E.E., Assistant Professor of Electrical Engineering 3228 4th St. S. E. CARL SCHLENKER, B.A., Professor of German 514 11th Ave. S. E. GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Professor of Electrical Engi-717 E. River Road neering

S. CARL SHIPLEY, B.S., M.E., Assistant Professor of Machine C	onstruc-
tion 1517 E. Riv	
CHARLES F. SHOOP, B.S., Assistant Professor of Experimenta	l Engi-
neering 811 Fulton	St. S. E.
CHARLES F. SIDENER, B.S., Professor of Chemistry 1320 5th	
CLINTON R. STAUFFER, Professor of Geology 1023 University A	ve. S. E.
ANTHONY ZELENY, Ph.D., Professor of Physics 613 Fulton	St. S. E.
CHARLES H. BLITMAN, C.E., Instructor in Drawing 1318 7th	St. S. E.
Edward W. Davis, B.S., Instructor in Mechanics and Mathematics	1
979 14th Av	ve. S. E.
E. O. DIETERICH, Ph.D., Instructor in Physics 809 Essex	St. S. E.
GERHARD DIETRICHSON, Ph.D., Instructor in Chemistry	
429 Walnut	
ROBERT W. FRENCH, B.S., Instructor in Drawing 1018 16th A	ve. S. E.
J. THEODORE GEISSENDOERFER, Ph.D., Instructor in German	
967 14th A	ve. S. E.
A. WALFRED JOHNSTON, M.A., Instructor in Geology	
803 University A	ve. S. E.
ERVIN W. McCullough, E.M., Instructor in Metallurgy	
934 E. Bayliss Ave.,	
JOHN F. MURPHY, C.E., Instructor in Mining 619 University A	
Edmund Newton, E.M., Instructor in Metallurgy 941 14th A	
Edward P. Quigley, Instructor in Forge Work 2923 Chica	0
TERENCE T. QUIRK, E.M., Ph.D., Instructor in Geology 1603 4th	
WILLIAM H. RICHARDS, Instructor in Carpentry 1423 W.	27th St.
FRANK B. ROWLEY, B.S., M.E., Instructor in Drawing	
217 Beacon	
Edward H. SIRICH, Instructor in Romance Languages 321 14th A	ve. S. E.
WOLDEMAR M. STERNBERG, B.S.Chem., Instructor in Chemistry	C F
3345 University A	
STERLING TEMPLE, M.A., Instructor in Chemistry 1758 Blair St., RICHARD WISCHKAEMPER, M.A., Instructor in German 979 14th A	
	ve. 5. E.
ARNOLD KIRKPATRICK, Ph.B., Assistant in Chemistry	St Paul
THOMAS M. BRODERICK, Assistant in Geology 3204 Portla	
WILLIAM L. UGLOW, Ph.D., Assistant in Geology 1609 4th	
WILLIAM L. OGLOW, FILD., Assistant in Geology 1009 4th	St. S. E.

GENERAL INFORMATION

The School of Mines was established by the Board of Regents in 1888, upon recommendation of the General Faculty of the University. The buildings and laboratories of the School are located on the main campus of the University. The mining districts of Minnesota are within a few hours, by rail, from Minneapolis. The heartiest coöperation exists between the various mine managements and the School, so that the mining properties are at all times open to parties from the school for observation and study trips. Practical surveying, geological field work, and underground work are carried on in one or more of the districts. Students in the School of Mines have, therefore, all the advantages afforded by a large university combined with ample opportunity for field observation and experience.

The School of Mines occupies the new building provided by the Legislature of 1913. In the basement are the assay and electro-metallurgical laboratories, together with machinery room, instrument room, balance room, furnace rooms, and necessary storerooms. On the first floor are the administrative offices, offices and lecture rooms of the departments of Metallurgy and Mine Plant and Mechanics. On the second floor are the offices, lecture rooms and drafting rooms of the department of Mining, the ore dressing laboratory, and the library of the school. On the third floor are the offices, laboratories, and lecture rooms of the department of Metallography, junior drafting room, photographic dark rooms, blue printing room, and offices and computing rooms for the branch of the Experiment Station serving the Tax Commission.

DEGREES

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of Engineer of Mines (E.M.), Engineer of Mines in Geology [E.M. (Geology)], and Metallurgical Engineer (Met.E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four or five years, and vice versa, provided such candidate completes an additional year's work at the School and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and the Mechanic Arts, and in the School of Analytical and Applied Chemistry, who contemplate taking a degree in this School after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

7

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thoro courses in mechanics, mathematics, surveying, physics, chemistry, and the necessary theory and practice of structural, mechanical and electrical engineering.

(a) Geology—to determine the location of the ore. (b) Mineralogy—to determine its nature. (c) Assaying—to determine if it has value for treatment. (d) Mining Engineering—to furnish material for treatment. (e) Ore Testing—to determine best methods of treatment. (f) Ore Dressing—furnishing products for metallurgical treatment. (g) Metal-lurgy—smelting and refining ores and ore dressing products; reduction to metals.

EXPERIMENT STATION

The School of Mines Experiment Station has been recently established to promote the development of the mining and mineral resources of the state, to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates for the Tax Commission and to do such other work along the lines above outlined as may be requested by other state departments. Coöperation has been effected with the Minnesota Geological Survey and the School of Chemistry.

The Experiment Station is prepared to assist citizens interested in these lines of work; to assay specimens of ore, rocks, clays, and minerals found within the state free of charge.

In submitting samples the sender must state the exact location where each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the office of the Station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, The University of Minnesota, Minneapolis, Minnesota.

LIBRARY

The library occupies a well-lighted room, 55 feet by 61 feet, on the second floor of the School of Mines building. The books have been carefully selected and form a working collection of great value, not only to the faculty and students, but also the mining men of the state. Only books relating to mining, metallurgy, metallography, geology and allied subjects are shelved in this library, the general university library as well as the public libraries of Minneapolis and St. Paul serving as reserve collections. The library is especially rich in complete sets of periodicals, transactions, and the reports of state and foreign mining departments. Foreign technical literature is well represented. A card index is kept of all articles of value and interest appearing in the leading periodicals.

ADMISSION

The courses leading to the degrees of Engineer of Mines, Engineer of Mines (in Geology) and Metallurgical Engineer may be completed in either four or five years. Students may enter the School of Mines without preparation in Higher Algebra and Solid Geometry. Such students must enter the five-year courses. It is recommended that students who come poorly prepared in Mathematics enter the five-year courses.

Students may be admitted to the School of Mines either by certificate or examination, or both.

ADMISSION BY EXAMINATION

Entrance examinations are offered at the University during registration week, September 19 to 22. Candidates entering by this method must pass examinations in fifteen units so chosen as to satisfy the requirements outlined below. Certificates from the College Entrance Examination Board and from the High School Board are accepted in lieu of examinations in the subjects they represent. Those desiring to take examinations should notify the Registrar of the University in writing not later than August 31.

ADMISSION BY CERTIFICATE

Graduates of the following courses, provided their preparation satisfies the requirements outlined below, may be admitted.

I. Any four-year course of a Minnesota state high school or other accredited school in the state.

2. A four-year course of schools in any other state accredited to the state university of that state.

3. The Advanced Latin and Advanced English courses of the Minnesota state normal schools.

The applicant for admission should request the principal or superintendent to forward to the Registrar of the University a complete tran-

script of his high-school or preparatory-school record showing the number of weeks and hours per week spent upon each study, with the grades entered as *passed*, *passed* with credit, or *passed* with honor. Credential blanks prepared by the University must be used; these blanks may be secured upon application to the Registrar. Upon receipt of the credentials at the University the Registrar will notify the applicant with regard to his admission.

ENTRANCE REQUIREMENTS

FIVE-YEAR COURSES

English, three units; Elementary Algebra and Plane Geometry, one unit each; ten additional units, of which not more than four may be in Group F.

FOUR-YEAR COURSES

Same as five-year courses with the addition of one-half unit each of Higher Algebra and Solid Geometry. It is recommended that students who enter these courses review Higher Algebra and Solid Geometry. Those unable to carry freshman mathematics satisfactorily will be required to re-register in the five-year course.

LIST OF ENTRANCE SUBJECTS

The term *unit* means not less than five recitations of forty minutes each per week for a period of thirty-six weeks. In manual subjects and kindred courses, it means the equivalent of ten recitation periods per week for thirty-six weeks.

GROUP A. ENGLISH. Four units.

GROUP B. LANGUAGES. Latin, Greek, German, French, Spanish, Scandinavian, one to four units each.

GROUP C. HISTORY AND SOCIAL SCIENCES. Ancient and Modern History, one unit each; English and Senior American History, one-half unit each; American Government, Economics, Economic History of England, and Economic History of the United States, one-half unit each; Commercial Geography, and History of Commerce, one-half or one unit each.

GROUP D. MATHEMATICS. Elementary Algebra and Plane Geometry, one unit each; Higher Algebra, Solid Geometry, and Trigonometry, one-half unit each.

GROUP E. NATURAL SCIENCES. Physics and Chemistry, one unit each; Botany and Zoology, one-half or one unit each; Physiology, Astronomy, Geology, and Physiography, one-half unit each.

GROUP F. VOCATIONAL SUBJECTS. Business Law and Business Arithmetic, one-half unit each; Elementary and Advanced Bookkeeping, one

unit each: Stenography and Typewriting, one or two units. Freehand Drawing, Mechanical Drawing, and Shopwork, one or two units each. Agriculture, one to four units. Normal Training subjects, one to three units, provided the applicant has had one year of subsequent teaching experience.

DESCRIPTION OF SUBJECTS ACCEPTED FOR ADMISSION

A description of the subjects accepted for admission to the University will be found in the Bulletin of General Information, which will be sent to any address upon application to the Registrar, The University of Minnesota, Minneapolis.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

ADMISSION TO ADVANCED STANDING

This University accepts records from all reputable colleges and universities for credit to advanced standing. Such records are accepted as far as they are equivalent to the work done in this institution. In bringing records from other institutions, the certificate must be upon the official blank of the institution granting the certificate and should show:

- (a) The subject studied; if a language, the books read, etc.
- (b) The number of weeks and hours per week spent upon each subject.
- (c) Ground covered in laboratory work in case of laboratory subjects.
- (d) The result. The exact grades should be stated, accompanied by an explanation of the marking system employed.

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrollment Committee of the School of Mines.

EXPENSES

One half of the Annual Incidental Fee of \$55, which includes all laboratory charges, is payable at the opening of each semester. Cards entitling the student to admission to classes will not be issued until the fees have been paid. Books and supplies for each year of the course cost approximately \$25. Field-work expense during the sophomore year is estimated at \$150 and for the junior year at \$225.

DEPOSIT FEE

At the beginning of each year, in addition to the first semester incidental fee, a deposit fee of five dollars is required of every student to cover the following items:

of all).....\$.50 per year Locker rental, locker key deposit......\$.50 to \$1.00 per year Laboratory breakages, or damage to University property. Penalties for late registration or late payment of fees.

A penalty fee of one dollar (\$1) must be paid by all students who register or pay fees after the prescribed time. (See calendar, page 3.) After the day previous to that on which classes begin, the penalty for delay increases at the rate of twenty-five cents a day.

The unused balance of the deposit fee will be returned at the end of each year. If, at any time during the college year, the amount of charges against a student exceed the amount of the deposit, a second fee of five dollars (\$5) will be required.

SPECIAL FEES

The following special items may be included in the expenses of a student:

Minnesota Union membership, required\$1 per semester
Special examination for removal of condition, at other than the
set time 5.00
Examination on subject taken out of class 5.00
No fee for such examinations on first entering the Univer-
sity, if taken within the first six weeks.
Military uniform, required of all freshmen and first-year stu-
dents
Gymnasium suit

THE ELLIOT SCHOLARSHIP LOAN FUND

To fulfill the wish of the late Dr. A. F. Elliot to aid young men who find their efforts to obtain a practical education embarrassed through lack of means, the sum of \$5,000 was placed in the hands of the Board of Regents as a scholarship fund. The income from this fund is loaned students in the School of Mines on the following conditions: the financial needs of the applicant, his scholarship, moral character, enthusiasm shown in his work, and promise of usefulness in his profession. When money is available, it may be loaned to pay the expenses of worthy students during sickness. The loans are to be repaid, without interest, at the earliest convenience of the recipients.

GRADUATION.

Students completing courses of study to the satisfaction of the Faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examinations in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least one full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the Faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examinations held at the end of the second semester. Irregular attendance will debar a student from entering all final examinations.

THESIS

The thesis work is intended to bring in review and connect the work in Mining and Metallurgy, Geology and Mineralogy, Mechanical and Electrical Engineering, Mathematics and Mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology, for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem, for candidates for the degree of Metallurgical Engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

Prior to the reopening of Field Work at the School of Mines, Tuesday, September 19, 1916, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on the project must be under way by December I. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the School.

SPECIAL NOTES

Students failing to receive a semester mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the Registrar his average in all subjects and present himself for supplementary examinations, according to the program given on page 4.

Failure of the Registrar to notify a student of deficiencies will not be accepted as a reason for neglecting to report for necessary supplementary examinations. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

Students failing to receive a semester mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The Faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination at the end of the first or second semester will be given zero on the examinations.

Students whose absences in either semester exceed four weeks in the aggregate are not permitted to take examinations without special permission of the Faculty.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

During the academic year students will be held responsible for the receipt of official communications sent to them through the University post-office. During the summer vacation they will be held responsible for the receipt of such communications sent to the home address given on registration blank for the preceding academic year, unless forma notification of their correct address is filed with the Registrar and the Dean.

COURSES OF STUDY

UNIFORM CURRICULUM TO END OF SOPHOMORE YEAR

The courses leading to the degrees of Engineer of Mines, Engineer of Mines in Geology, and Metallurgical Engineer, are uniform for the first three years of the five-year courses and for the first two years of the four-year courses.

FIVE-YEAR COURSES

FIRST YEAR

First Semester

Chemistry 5*, General and Analytical, 5[†] Mathematics I, Computation and Mensuration, 4 Mathematics 3, Mine Accounting, 6 Mechanical Engineering I, Shop Work, 6 Mineralogy 23, Elements of Mineralogy, 8 Military Drill

Second Semester

Chemistry 6, General and Analytical 7, Chem. 5 Mathematics 2, Algebra, 4 Mechanical Engineering 1, Shop Work, 6 Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23 Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23 Military Drill

FRESHMAN YEAR

First Semester

Chemistry 11, Quantitative Analysis, 7, Chem. 5, 6 Drawing 11, Engineering Drawing, 10 Geology 105, Elements of Rock Study, 4, Mineral. 24 Mathematics 5, Algebra and Trigonometry, 6, Math. 1, 2 Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2 Military Drill

^{*}Odd numbers indicate first-semester courses; even numbers, second-semester courses. A combination of the two (e.g., 5-6) indicates courses continuing through the year. In the case of courses repeated the second semester, the suffix *a* indicates first semester; the suffix *b*, second semester.

[†]Figure following the descriptive name of a course indicates number of hours a week. Course names following indicate prerequisite courses.

Second Semester

Chemistry 12, Quantitative Analysis, 7, Chem. 11 Drawing 12, Engineering Drawing, 8, Draw. 11 Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5 Geology 1b, General Geology, 3, Mineral. 24 Geology 106, Petrology, 4, Geol. 105 Metallurgy 4, Wrought Iron and Steel, 3, Met. 3 Military Drill

SOPHOMORE YEAR

First Semester

Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6 Mathematics 7, Calculus, 5, Math. 6 Geology 73, Historical and Economic Geology, 3, Geol. 106 Metallurgy 105, Base Metals, 4, Met. 4 Mining 1, Mine Surveying, 3, Math. 6 Physics 1, General, 3, Math. 6 Physics 3, General Laboratory Practice, 2, with Physics 1

Second Semester

Drawing 14, Drafting, 4, Draw. 13

Mathematics 8, Calculus, 3, Math. 7

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 2, Mine Surveying, 3, Min. 1

Mining 6, 1

Physics 2, General, 3, Physics 1

. Physics 4, General Laboratory Practice, 2, with Physics 2

Field Work. Months of May, June, July and August Mining 2f, Surveying, Min. 2, beginning about May I Geology If, Geol. Ib, 105, beginning about June 15 Underground Mining Work, beginning about July I

Four-Year Courses

FRESHMAN YEAR

First Semester

Chemistry 5, General and Analytical, 5 Drawing 11, Engineering Drawing, 10 Mathematics 5, Algebra and Trigonometry, 6 Mineralogy 23, Elements of Mineralogy, 8 Military Drill

16

Second Semester

Chemistry 6, General and Analytical, 7, Chem. 5 Drawing 12, Engineering Drawing, 8, Draw. 11 Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5 Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23 Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23 Military Drill

SOPHOMORE YEAR

First Semester

Chemistry 11, Quantitative Analysis, 7, Chem. 5, 6 Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6 Geology 105, Elements of Rock Study, 4, Mineral. 24 Mathematics 7, Calculus, 5, Math. 6 Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2 Mining 1, Mine Surveying, 3, Math. 6 Physics 1, General, 3, Math. 6 Physics 3, General Laboratory Practice, 2, with Physics 1 Military Drill

Second Semester

Chemistry 12, Quantitative Analysis, 7, Chem. 101
Drawing 14, Drafting, 4, Draw. 13
Geology 1b, General Geology, 3, Mineral. 24
Geology 106, Petrology, 4, Geol. 105
Mathematics 8, Calculus, 3, Math. 7
Metallurgy 4, Wrought Iron and Steel, 3, Met. 3
Mining 2, Mine Surveying, 3, Min. 1
Mining 6, 1
Physics 2, General, 3, Physics 1
Physics 4, General Laboratory Practice, 2, with Physics 2
Military Drill
Field Work. Months of May, June, July and August Mining 2f, Surveying, Min. 2, beginning about May 1
Geology 1f, Geol. 1b, 105, beginning about June 15

Underground Mining Work, beginning about July I

COURSES IN MINING ENGINEERING

COURSES LEADING TO THE DEGREE OF E.M.

FIVE-YEAR COURSES

JUNIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12 Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11 Geology 111, Ore Deposits, 4, Geol. 106 Mechanics 9, 5, Math. 8 Mechanics 11, Mine Plant, 5, Math. 8 Metallurgy 5, Ore Dressing, 4 Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Mech. 10

Geology 112, Problems in Ore Deposits, 4, Geol. 111

Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Metallurgy 6, Ore Dressing 4, Met. 5

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15 Underground Mining Work, beginning about June 1

SENIOR YEAR

First Semester

Electrical Engineering 53, Electric Power, 5, Physics, 3, 4 Mechanics 13, Water Power, 5, Mech. 10 Mechanics 15, Engineering Construction, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8 Mining 11, 5, Min. 10 Mining 13, Thesis, 2, Min. 10f

Second Semester

Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Mechanics 16, Mine Plant Design, 10, Mech. 15 Metallurgy 8, Special Problems, 4, Met. 7 Mining 12, 5, Min. 11 Mining 14, Thesis, 12, Min. 13

COURSES OF STUDY

FOUR-YEAR COURSES

JUNIOR YEAR

First Semester

Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11 Geology 73, Historical and Economic Geology, 3, Geol. 106, 1b Mechanics 9, 5, Math. 8 Mechanics 11, Mine Plant, 5, Math. 8 Metallurgy 105, Base Metals, 4, Met. 4 Metallurgy 5, Ore Dressing, 4 Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4. with Mech. 10
Mechanics 10, 6, Mech. 9
Mechanics 12, Mine Plant, 6, Mech. 11
Metallurgy 6, Ore Dressing 5, Met. 5
Metallurgy 106, Precious Metals, 4, Met. 105
Mining 10, 5, Min. 9
Mining 4, Mine Mapping, 6, Min. 2f
Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1

Mining 10f, beginning about May 15 Underground Mining Work, beginning about June 1

SENIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12 Electrical Engineering 53, Electric Power, 5, Physics 3, 4 Geology 111, Ore Deposits, 4, Geol. 106 Mechanics 13, Water Power, 5, Mech. 10 Mechanics 15, Engineering Construction, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8 Mining 11, 5, Min. 10 Mining 13, Thesis, 2, Min. 10f

Second Semester

Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Geology 112, Problems in Ore Deposits, 4, Geol. 111 Metallurgy 8, Special Problems, 4, Met. 7 Mechanics 16, Mine Plant Design, 10, Mech. 15 Mining 12, 5, Min. 11 Mining 14, Thesis, 12, Min. 13

COURSES LEADING TO THE DEGREE OF E.M. (GEOLOGY)

JUNIOR YEAR

First Semester

Geology 73, Historical and Economic Geology 3, 106, 1b Geology 11, Paleontology 3, 1b German 15 or 17, 3, German 16 for 17 or

French 1 or 3, 3, French 2 for 3

Metallurgy.155, Metallography 4

Mining 9, 5, Min. 6

Elective 6 to 10

Second Semester

Geology 124, Structural and Metamorphic Geology 3, 73
Geology 12, Paleontology 3, 57
German 16 or 18, 3 German 15 or 17
or
French 2 or 4, 3, French I or 3
Metallurgy 156, Metallography 4, 155
Mining 10, 5, Min. 9
Mining 4, Mine Mapping 6, Min. 2f
Elective 3
Field work to be arranged

SENIOR YEAR

First Semester

Geology III, Ore Deposits 4, 73 Geology I51, Advanced General Geology, 3 Geology I13, Laboratory course in Economic Geology, 4, with III German 17 or 23. 3, German 16 or 18 or French 3 or 5, 3, French 2 or 4 Mining II, 5, Min. 10 Thesis, 2 Elective 3 Second Semester

Geology 112, Problems in Ore Deposits 4, Geol. 111

Geology 152, Advanced General Geology, 3

Geology 144, Construction and Interpretation of Geologic Maps, 3, Geol.

Geology 138, Testing of Economic Minerals, 3

German 18 or 24, 3, German 17 or 23

(

French 4 or (. 3. French 3 or 5

Mining 12, 5, Min. 11

Thesis. 4

COURSES OF STUDY

DEPARTMENT OF MINING ENGINEERING

The department is well supplied with samples of the smaller mine equipment, models, drawings, photographs, lantern slides, and mine maps. The lectures treat of prospecting, development, support of excavations, mining methods, mine administration, mining law, and the necessary allied subjects. The courses in Mining Engineering extend through the sophomore, junior, and senior years.

MINE SURVEYING

The work in surveying is given in the sophomore year and is designed solely for mining engineers. The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabi or Vermilion Range. The exact location will be announced in March of each year.

The students will be divided into squads of two to four. Each squad must provide itself with a 6-foot steel tape graduated to hundredths. The duration of the course will be seven weeks ($5\frac{1}{2}$ days of 8 hours each constitute a week). Each student will be required to complete satisfactorily the following exercises and surveys:

I. Chaining and taping

- 2. Compass work
- 3. Adjustment and use of wye and dumpy levels
- 4. Adjustment of mining transit
- 5. Reading angles
- 6. Traverse with transit and steel tape
- 7. Azimuth traverse with stadia

8. Determination of meridian, latitude, and time by solar and stellar observations

9. Survey of mining claim according to the regulations of the U. S. Government

- 10. Measurement of earthwork
- 11. Laying out railroad tangents, curves, and crossings
- 12. Exercises in plane table work and geological surveying
- 13. The survey of a mire

A full equipment of surveying instruments of the latest and best makes is furnished to each squad for this work.

This is followed by a course in Mine Mapping during the second semester of junior year.

Students who furnish satisfactory evidence of proficiency in this work may be given credit therefor. The department, however, reserves the right in any case to require such students to take a theoretical or a practical examination or both.

FIELD WORK IN MINING

Sophomore Year

After the close of the field work in Geology (last two weeks in June), members of the sophomore class are required to engage for six weeks in underground mining work on the Minnesota or Michigan iron ranges, for which they may receive wages.

Junior Year

Upon termination of the junior field work in Metallurgy (about May 15), the members of the junior class, who are candidates for the degree of Engineer of Mines, are required to devote two weeks to the study of mine plant and mine operation under the direction of the department. This work will be given in one of the leading western metal mining districts, exact location to be announced in April of each year. Thereafter, during the months of June, July, and August, the student is required to spend at least six weeks in actual underground mining work in the West, for which he may receive wages. The department will render all possible assistance in locating students in districts of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must in person submit this diary to the department on the date of the reopening of field work. In judging the character of the student's field work, equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 19, 1916. No senior will be registered after that date. **Registration will** cover Field Work, Electric Power, and Geology.

The final reports covering Field Work in Mining and Metalurgy must be prepared at the School of Mines under the direct supervision of the departments concerned: Metallurgy, September 19-26, inclusive; Mining and Mine Plant, September 27-October 9.

On October 9 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 9. These reports shall become the property of the School.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reasons, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

COURSES IN METALLURGY

COURSES LEADING TO THE DEGREE OF MET. E.

FIVE-YEAR COURSES

JUNIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12 Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11 Geology 111, Ore Deposits, 4, Geol. 106 Mechanics 9, 5, Math. 8 Mechanics 11, Mine Plant, 5, Math. 8

Metallurgy 5, Ore Dressing, 4

Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Mech. 10 Geology 112, Problems in Ore Deposits, 4, Geol. 111

Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Metallurgy 6, Ore Dressing 4, Met. 5

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15 Underground Mining Work, beginning about June 1

SENIOR YEAR

First Semester

Electrical Engineering 53, Electric Power, 5, Physics 3, 4 Mechanics 13, Water Power, 5, Mech. 10 Mechanics 15, Engineering Construction, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8 Metallurgy 11, Special Problems, 8, Met. 106, Min. 8 Metallurgy 109, Electrometallurgy, 3, Met. 106

Second Semester

Chemistry 144, Electrochemistry, 5, Chem. 102 Chemistry 24, Iron and Steel Analysis, 7, Chem. 12 Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Mechanics 18, Mill and Smelter Design, 10, Mech. 15 Metallurgy 152, Metallography, 6, Met. 106 Metallurgy 8, Special Problems, 4, Met. 7 Metallurgy 14, Thesis, 10, Met. 11

Four-Year Courses

JUNIOR YEAR

First Semester

Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11 Geology 73, Historical and Economic Geology, 3, Geol. 105, 1b Mechanics 9, 5, Math. 8 Mechanics 11, Mine Plant, 5, Math. 8 Metallurgy 105, Base Metals, 4, Met. 4 Metallurgy 5, Ore Dressing, 4 Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Mech. 10 Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11 .

Metallurgy 5, Ore Dressing 4, Met. 5

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May I Mining 10f, beginning about May 15 Smelter Work, beginning about June I

SENIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12 Electrical Engineering 53, Electric Power, 5, Physics 3, 4 Mechanics 13, Water Power, 5, Mech. 10 Mechanics 15, Engineering Construction, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8 Metallurgy 11, Special Problems, 8, Met. 106, Min. 8 Metallurgy 100, Electrometallurgy, 3, Met. 106

Second Semester

Chemistry 144, Electrochemistry, 5, Chem. 102 Chemistry 24, Iron and Steel Analysis, 7, Chem. 12 Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Mechanics 18, Mill and Smelter Design, 10, Mech. 15 Metallurgy 152, Metallography, 6, Met. 106 Metallurgy 8, Special Problems, 4, Met. 7 Metallurgy 14, Thesis, 10, Met. 11

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use. The practical work consists in visits to smelting and refining works which are accessible. The work in Metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces. fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags are shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their reports in detail. This work is offered to students completing the necessary courses in Mineralogy and Chemistry.

ORE DRESSING

The lectures and recitations in Ore Dressing extend through the junior year, and comprise the detailed sutdy of ore dressing and concentrating machinery, together with the study of typical combinations of dressing machines as found in the several mining districts of the United States. In connection with the theoretic alwork, the ore dressing laboratory and testing plant of the School is utilized for practical illustrations.

ORE TESTING

The lectures treat of the use and purposes of all the machinery connected with the subject, supplemented by detailed drawings. There are complete testing works, connected with the department where the student may see the working of, and handle for himself crushers, rolls, and concentrating machinery, as well as sizing apparatus and hydraulic separators. Sufficiently large amounts of ore are given to make the necessary tests upon the different machines and the students report the best method of treatment. The courses run through senior year and are required of students both in Mining and Metallurgy. The ore-testing works meet educational, as well as commercial, needs. Educational.—The ore-testing plant acquaints the student with the construction and manipulation of the principal typical machines used in the leading ore-dressing establishments of the country. It is here that students in Mining and Metallurgical Engineering get the requisite practical experience. They handle all machines and operate on sufficiently large amounts of material to determine the methods best suited to a given ore to extract the largest amount of metal with the least possible loss.

Commercial.—Ore-testing works are an important factor in mining and metallurgical projects. The commercial object is to determine the best method of treating a given ore so as to yield the largest percentage of the metal it contains at the least possible cost. Samples varying from 500 pounds to car-load lots can be treated by various methods.

As the funds appropriated for the erection of such a plant were sufficient to purchase only the necessary machinery, the business men of Minneapolis generously provided a suitable building. This building, 94 by 66 feet, is built of brick and stone.

FIELD WORK IN METALLURGY

At the end of the junior year opportunity is given the student to study metallurgical operations at one or more smelting works. This work will begin about May I. Not over two weeks' time will be devoted to this work.

Upon termination of the junior field work in Metallurgy and two weeks in Mining (not later than June I), the members of the junior class who are candidates for the degree of Metallurgical Engineer, are required to spend at least six weeks in practical work in one or more of the smelters of the West, for which they may receive wages. The department will render all possible assistance in locating students in districts of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must, in person, submit this diary to the department on date of reopening of field work. In judging the character of the student's field work equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 19, 1916. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering field work in Metallurgy and Mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: Metallurgy, September 10-26, inclusive; Mining and Mine Plant, September 27-October 9.

On October 9 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a type-

written report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 9. These reports shall become the property of the School.

METALLOGRAPHY

Courses in Metallography are offered to seniors who are candidates for the degree of Metallurgical Engineer, students in the Colleges of Science, Literature, and the Arts, Engineering, Chemistry, and the Graduate School.

These courses deal with the microscopic examination of metals, alloys, and ores. The lectures treat of and describe the apparatus used in connection with this subject, the methods of preparing specimens, the physical, chemical, and metallurgical principles involved, and the interpretation of the results of microscopic examination. A collection of specimens, micro-photographs, and lantern slides covering wrought iron, low carbon, structural, rail, and tool steels, brasses, bronzes, and other industrial alloys are available for study and comparison. The laboratory course includes the microscopic and pyrometric study of metals, alloys, and ores. The laboratory is equipped with microscopes, electric and portable gas furnaces, and pyrometers of the latest and improved types. A special dark room is available for the preparation of microphotographs.

DEPARTMENTAL STATEMENTS

EXPLANATION OF COURSE NUMBERS

Odd numbers indicate first-semester courses; even numbers, secondsemester courses. A combination of the two (e.g., 5-6) indicates courses continuing through the year. The suffixes a and b apply to one-semester courses offered both semesters, a indicating the first semester and b the second semester (e.g., 3a,b; 4a,b). The suffix f indicates summer field work.

All undergraduate courses are numbered from I to 100. All courses open to undergraduates and graduates are numbered from 101 to 200. Strictly graduate courses are numbered from 201 up.

CHEMISTRY

Professors George B. Frankforter, Charles F. Sidener; Instructors Woldemar M. Sternberg, Sterling Temple, Gerhard Dietrichson; Assistant Arnold Kirkpatrick.

	Lect. or	Lab.		Prereq.
No. Title	rec. hrs.	hrs.	Required of	courses
5. Gen. & Anal. Chemistry	3	2	All Fr.	
6. Gen. & Anal. Chemistry	I	6	All Fr.	5
II. Quantitative Analysis	I	б	All Soph.	6
12. Quantitative Analysis	I	6	All Soph.	II
24. Iron & Steel Analysis	I	б	Sr. Met. E.	12
25. Ore & Slag Analysis	I	б	Sr. E. M. & Met. E.	I 2
144. Electrochemistry	I	4	Sr. Met. E.	· 12

- 5-6. GENERAL AND ANALYTICAL CHEMISTRY. An introduction to descriptive, physical, and metallurgical chemistry and qualitative analysis. FRANKFORTER, TEMPLE, and Assistants.
- **II-I2.** QUANTITATIVE ANALYSIS. A general discussion of quantitative methods, with laboratory work in gravimetric analysis, first semester; followed by a discussion of standard solutions and the necessary stoichiometric calculations with laboratory work in volumetric analysis, second semester. SIDENER, STERNERG, and Assistants.
- 24. JRON AND STEEL ANALYSIS. Includes technical methods for the determination of the common constituents of iron ores, iron, and steel, with training in rapid work. SIDENER, STERNBERG.
- 25. ORE AND SLAG ANALYSIS. Rapid technical method for the determination of certain constituents in ores and slags. SIDENER, STERNBERG.
- 144. ELECTROCHEMISTRY. A discussion of electro-analytical methods and industrial electrochemical processes, and their underlying principles. DIETRICHSON.

DRAWING AND DESCRIPTIVE GEOMETRY

Professor WILLIAM H. KIRCHNER; INSTRUCTORS CHARLES H. BLITMAN, ROBERT W. FRENCH, FRANK B. ROWLEY.

COURSES

		Lect. or	Lab.			
No.	Title	rec. hrs.	hrs.	Rec	quired of	Prereq. courses
t.t.,	Engineering	Drawing	IO	All F	r.	
E2.	Engineering	Drawing	8	A11 F	r.	II
13.	Descriptive	Geometry 2		All S	oph.	12, Math. 6
I4.	Drafting		4	All S	oph.	13

- 11. ENGINEERING DRAWING. Sketching, lettering, representation, parallel and radial projection, elements of engineering, representation of details of machines and structures, interpretation of working drawings. KIRCHNER, BLITMAN.
- 12. ENGINEERING DRAWING. Continuation of Course II as outlined above. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. Maps and sketches. Brush and pen conventions. Row-LEY, BLITMAN.
- 13. DESCRIPTIVE GEOMETRY. Projection: central and special cases, principles and applications, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems. KIRCHNER.
- 14. DRAFTING. Graphics, machine drafting, and structural drafting. Instruction in drafting room methods. FRENCH.

ELECTRICAL ENGINEERING

Professor George D. Shepardson; Assistant Professor William T. Ryan.

COURSES

		Lect. or La	ab.	
No.	Title	rec. hrs. hr	s. Required of	Prereq. courses
53.	Electric Power		Sr. E. M. & Met. E.	Physics 3, 4

53. ELECTRIC POWER. Elements of theory and practice of electrical measurements, wiring, dynamos, motors, and electric lighting. RYAN.

EXPERIMENTAL ENGINEERING

Professor William H. Kavanaugh; Assistant Professors Charles F. Shoop, Franklin R. McMillan.

		Lect. or	Lab.							
No.	Title	rec. hrs.	hrs.	F	Req	uirea	l o	f		Prereq. courses
21.	Steam Laboratory.		4	Jr.	Е.	$\mathbf{M}.$	&	Met.	Έ.	With Math. 11
22.	Strength of Materia	ls	4	Jr.	E.	М.	&	Met.	E.	With Math. 10
24.	Experimental Labor	atory	4	Sr.	E.	M.	&	Met.	E.	21

- 21. STEAM LABORATORY. Exercises in valve setting, indicator practice, calibration of steam gauges, efficiency of screws and hoists. Shoop.
- 22. STRENGTH OF MATERIALS. Laboratory work, investigating the strength and physical qualities of iron, steel, brass, copper, belting, chains, beams, brick, and stone. McMILLAN.
- 24. EXPERIMENTAL LABORATORY. Hydraulic measurements. Calibration of weirs, nozzles, meters, and other hydraulic apparatus, calorimetry; tests of pumps, engines, and boilers. KAVANAUGH.

GEOLOGY AND MINERALOGY

Professor WILLIAM H. EMMONS; Associate Professor CLINTON R. STAUF-FER; Assistant Professor FRANK F. GROUT; Instructors A. WALFRED JOHNSTON, T. T. QUIRK; Assistants T. M. BRODERICK, W. L. UGLOW.

	Le	ect. o	r Lab		
No.	Title re-	c. hrs	. hrs.	Required of 1	Prereq. courses
۲b.	General Geology	3		All Soph.	24
тf.	Field Work		2 wks	All Soph.	1b and 105
ΙΙ.	Paleontology	3		Jr. E. M. (Geol.)	гb
12.	Paleontology	3		Jr. E. M. (Geol.)	II
23.	Elements of Mineralogy	4	4	All Fr.	
24.	Descriptive Mineralogy	2	2	All Fr.	23
73.	Histor. & Econ. Geology	3		All Jr.	1b and 105
105.	Elements of Rock Study		4	All Soph.	24
106.	Petrology		4	All Soph.	105b
III.	Ore Deposits	4		Sr. E. M. & E. M. (Geol.)	106
II2.	Problems in Ore Deposits		4	Sr. E. M. & E. M. (Geol.)) 111
I I 3.	Laboratory Course in Econ.				
	Geology		4	Sr. E. M. (Geol.)	With III
124.	Struct. & Metamorph. Geol.	3		Jr. E. M. (Geol.)	73 and 105
138.	Testing Econ. Minerals		4	Elective	24 and 73
144.	Construction & Interpreta-				
	tion of Geologic Maps	÷	4	Elective	73
151.	Advanced General Geology	3		Sr. E. M. (Geol.)	73
152.	Advanced General Geology	3.		Sr. E. M. (Geol.)	151

- Ib. GENERAL GEOLOGY. A synoptical treatment of materials of the earth and of geologic processes. Physiographic; dynamic, and structural geology, with a brief introduction to Historical Geology. JOHNSTON.
- If. FIELD WORK. A two-week excursion to the Iron Ranges for practice in field methods, such as tracing contacts, working out structures and constructing and interpreting geologic maps. JOHNSTON and Assistants.
- **II.** PALEONTOLOGY. A study of fossil forms with special reference to those of geological importance. STAUFFER.
- 12. PALEONTOLOGY. Faunas and their correlation. A continuation of Course 11. Stauffer.

- 23. ELEMENTS OF MINERALOGY. The crystal systems; morphological, physical, and chemical character of minerals; occurrence, genesis, and uses of minerals; classifications and description of common minerals. Determinative work in laboratory, blowpipe analysis, sight identification. GROUT, BRODERICK, UGLOW.
- 24. DESCRIPTIVE MINERALOGY. A continuation of Course 23, special attention being given to metalliferous and rock-forming minerals. Laboratory determination and sight identification. The use of the goniometer and microscope. Laboratory work, reference reading, and field excursions. GROUT, BRODERICK, UGLOW.
- 73. HISTORICAL AND ECONOMIC GEOLOGY. (a) 'Historical Geology. The geologic history of North America, with special reference to its syngenetic mineral deposits. (b) Economic Geology. A study of the non-metallic minerals of economic value, and discussions of the geologic guides to prospecting for these deposits. EMMONS, QUIRK.
- **105**. ELEMENTS OF ROCK STUDY. The occurrence and genesis of igneous sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and alteration. The classification and methods of identification and description of rocks. BRODERICK.
- **106.** PETROLOGY. The identification and study of minerals and rocks by optical methods; the study of igneous rocks, crystalline schists, and metamorphic rocks. The origin and classification of rocks. BROD-ERICK.
- **III.** ORE DEPOSITS. The nature, distribution, and genesis of ore deposits of the United States; relations of ore deposits to geologic structure; the deformation and superficial alteration of ore deposits. EMMONS.
- **II2. PROBLEMS IN ORE DEPOSITS.** Field excursions, map work, lectures on field and laboratory methods. EMMONS.
- **II3.** LABORATORY COURSE IN ECONOMIC GEOLOGY. A study of ores, rocks and geological structure of selected American and foreign mining districts. Correlated reading. EMMONS.
- 124. STRUCTURAL AND METAMORPHIC GEOLOGY. The conditions, processes, and results of metamorphism; structural features resulting from deformation under varying conditions of load. JOHNSTON.
- 138. TESTING ECONOMIC MINERALS. Methods of determining quality of mineral deposits, described and illustrated by laboratory tests of coal, oil, building stone, and metallic ores.
- 144. CONSTRUCTION AND INTERPRETATION OF GEOLOGIC MAPS. Hours to be arranged. Methods of geologic examination; problems in construction and interpretation of geologic maps and sections, with special

reference to underground mapping of metalliferous areas; field practice in plane table methods of topographic and geologic mapping. QUIRK.

- 151. ADVANCED GENERAL GEOLOGY. Geologic processes and their results; development of the North American continent. STAUFFER.
- 152. Advanced General Geology. A continuation of Course 151. Stauffer.

GERMAN

Professor Carl Schlenker; Assistant Professors Oscar C. Burkhard, Instructors J. Theodore Geissendoerfer, Richard Wischkaemper.

COURSES

			Lect. or		Prereq.
No.	Title		rec. hrs.	Required of	courses
15.	Beginning	German	. 3	Jr. E. M. (Geol.)	
16.	Beginning	German	. 3	Jr. E. M. (Geol.)	IS
17.	Scientific	Intermediate	. 3	Jr. or Sr. E. M. (Geol.)	16
18.	Scientific	Intermediate	. 3	Jr. or Sr. E. M. (Geol.)	17
23.	Advanced	Scientific	. 3	Sr. E. M. (Geol.)	. 18
24.	Advanced	Scientific	. 3	Sr. E. M. (Geol.)	23

- 15-16. BEGINNING. Pronunciation, grammar, conversation, and composition; selected reading in easy prose and verse. BURKHARD.
- 17-18. SCIENTIFIC INTERMEDIATE. This course is arranged to meet the needs of students in the School of Mines. Text: Merckel's Bilder aus der Ingenicurtechnik. BURKHARD.
- 23-24. ADVANCED SCIENTIFIC READING. Reading of monographs and periodicals. GEISSENDOERFER, WISCHKAEMPER.

MECHANICAL ENGINEERING

Professor John J. Flather; Assistant Professor S. Carl Shipley; Instructors Edward Quigley, William H. Richards.

No.	Title	Lab. hrs.	Required of	Prereq. courses
ra. F	attern Making	6 (9 wks)	1st-yr. E. M. & Met. E.	
ıb. F	Soundry	6 (9 wks)	1st-yr. E. M. & Met. E.	
IC. F	orge	6 (9 wks)	1st-yr. E. M. & Met. E.	
ıd. N	Machine & Bench work	6 (9 wks)	1st-yr. E. M. & Met. E.	

- 1a. PATTERN MAKING. Use of tools, lathe and bench work, making of timber joints, core boxes and flasks. RICHARDS.
- Ib. FOUNDRY. Molding, core making, mixing and casting metals. QUIG-LEY.
- IC. FORGE. Use of tools, forging, welding, tool dressing and tempering. QUIGLEY.

Id. MACHINE AND BENCH WORK. Use of tools and elementary machine operations. SHIPLEY.

• METALLURGY

Professors William R. Appleby, Peter Christianson, Levi B. Pease; Assistant Professor Samuel L. Hoyt; Instructor Ervin W. Mc-Cullough.

	Leo	et. or Lab.		
No.	Title rec.	hrs. hrs.	Required of	Prereq. courses
2.	Assaying	4 8	All Fr.	Chem. 5, Min-
				eral, 23
3.	Gen. Met. & Iron and Steel	3	Soph. E. M. & Met. E.	2, Chem. 6
4.	Wrought Iron & Steel	3	Soph. E. M. & Met. E.	3
5.	Ore Dressing	4	All Jr.	
6.	Ore Dressing	4	All Jr.	
6f.	Field Work in Metallurgy	io dys	Jr. E. M. & Met. E.	Satisfactory
				completion
				of Jr. year
7.	Ore Testing	2 8	Sr. E. M. & Met. E.	106, 5
8.	Special Problems in Ore			
	Testing	•• 4	Sr. E. M. & Met. E.	7
II.	Special Problems in Met	8	Sr. Met. E.	106, 5
14.	Thesis and Specifications	10	Sr. Met. E.	II
105.	Met. of Base Metals	4	Jr. E. M. & Met. E.	4
106.	Met. of Precious Metals	4 • •	Jr. E. M. & Met. E.	105
109.	Electrometallurgy	3 ••	Sr. Met. E.	106
I52.	Metallography	2 4	Sr. Met. E.	106
I53.	Metallography	3 4	Elective	Chem. 12,
				Phys. 1 and 2
154.	Metallography	3 4	Elective	153
155.	Metallog. for Geologists	2 2	Elective	Geol. 4, 5 & 18
	Metallog. for Geologists	2 2	Elective	155
I 57.	Metallog. for Engineers	2 4	Elective	Mech. Eng.
				3 and 4
160.	Metallog. for Chemists	2 2	Elective	Chem. 12,
				Phys. 1 and 2
	Ad. Metallog. for Eng	2 4	Elective	1.5.7
	Dental Metallog	3 ••	Elective	
	Ad. Metallog.	To be ar.	Elective	154
202.	Ad. Metallog.	To be ar.	Elective	201

- 2. ASSAYING. Determination of values of ores, metallurgical products, and bullion. APPLEBY and Assistants.
- 3. GENERAL METALLURGY AND METALLURGY OF IRON. Including the subjects of combustion, fuels, refractory materials and furnaces. Lectures and recitations on metallurgy of iron. CHRISTIANSON.
- METALLURGY OF WROUGHT IRON AND STEEL. Consideration of the principles of manufacture, details of plant construction, and chemical and physical phenomena. CHRISTIANSON.

- 5-6. ORE DRESSING. Examination of ores, crushing, sizing classification, and methods of mechanical separation. McCullough.
- 6f. FIELD WORK IN METALLURGY. Study of metallurgical operations at smelters and mills. Detailed report is required covering plants visited. CHRISTIANSON, PEASE.
- 7. ORE TESTING. Determinations of methods of ore treatment, stamping, concentration, cyanidation, roasting, and amalgamation. CHRISTIAN-SON and Assistants.
- 8. SPECIAL PROBLEMS IN ORE TESTING. Continuation of Course 7. PEASE and Assistants.
- **II.** SPECIAL PROBLEMS IN METALLURGY. Research work preparatory to thesis. Appleby and Assistants.
- 14. THESIS AND SPECIFICATIONS. Detailed investigations of ore treatment, with report including designs and specifications for suitable plants. APPLEBY, COMSTOCK, and Assistants.
- 105. METALLURGY OF THE BASE METALS. Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining methods. PEASE.
- 106. METALLURGY OF THE PRECIOUS METALS. Gold, silver, and platinum. Methods and principles of cyanidation, chlorination, amalgamation, and lixiviation as applied to the treatment of the above. PEASE.
- 109. ELECTROMETALLURGY. A study of the reduction of ores, refining of metals, and production of metals by electrolytic deposition; and the use of the electric furnace for smelting of ores, refining metals, and the manufacture of refractory alloys. CHRISTIANSON.
- 152. METALLOGRAPHY. A study of the microstructure of metals and alloys as affected by heat and industrial treatments, together with the influence of changes of structure on their properties. Special attention is given to siderurgic products. Hoyt.
- 153-154. METALLOGRAPHY. Theory of metallic alloys. Metallographic technique. Properties of metals and alloys. Metallography of iron and steel and confimercial alloys. Technical metallography. Hovr.
- 155-156. METALLOGRAPHY APPLIED TO THE STUDY OF GEOLOGY. Physicochemical principles and their application to the study of the genesis of rocks and ore bodies. Microscopical examination and synthetic preparation of opaque minerals. Hoyt.
- 157. METALLOGRAPHY FOR ENGINEERING STUDENTS. Metallurgy of iron and steel. Microscopic and thermal analysis of steel and cast iron; heat and mechanical treatment. The properties of iron and steel as affected by composition and treatment. Laboratory work. Hoyt.

- 160. METALLOGRAPHY FOR CHEMICAL STUDENTS. The preparation of metallic alloys; their microscopical and thermal analysis. Steel and other commercial alloys with particular reference to chemical metallurgy. Corrosion of steel and non-ferrous alloys. Metallography applied to analytical chemistry. Hoyt.
- 162. ADVANCED METALLOGRAPHY FOR ENGINEERING STUDENTS. Metallography applied to engineering practice; machine design, structural engineering, electrical engineering. Engineering specifications involving the use of metals and alloys. Hoyt.
- **163.** DENTAL METALLOGRAPHY. Study of the dental alloys from the standpoint of metallography. Hoyr.
- 201-202. ADVANCED METALLOGRAPHY. Technical and scientific research. The study of steel rails, automobile and locomotive parts, tool steels etc. Special problems in metallography with outside reading. Seminar work on the recent advances in metallography. Hoyt.

MINE PLANT AND MECHANICS

Professor Elting H. Comstock; Assistant Professor Edwin M. Lambert; Instructor Edward W. Davis.

	Lec	t. or	Lab.		Prereq.
No.	Title rec.	hrs.	hrs.	Required of	courses
I.	Computation & Mensuration	3		All 1st-yr. students	
3.	Mine Accounting		6	All 1st-yr. students	
4.	Algebra	4		All 1st-yr. students	
5.	Algebra & Trigonometry	6		All Fr.	1 & 2
6.	Spherical Trig. & Anal. Geom.	6		All Fr.	5
7.	Calculus	5		All Soph.	6
8.	Calculus	3		All Soph.	7
9.	Mechanics	5.		All Jr.	8
ΙΟ.	Mechanics	6		All Jr.	9
II.	Mine Plant	5		Jr. E. M. & Met. E.	8
12.	Mine Plant	6		Jr. E. M. & Met. E.	ΙI
I3.	Hydraulics & Water-Power	5		All Sr.	IO
15.	Engineering Construction.	I	4	Sr. E. M. & Met. E.	IO
16.	Mine Plant Design		10	Sr. E. M.	I 5
18.	Mill and Smelter Design		6	Sr. Met. E.	I 5

- **I.** COMPUTATION AND MENSURATION. Demonstrations of most important theorems of solid geometry. Volumes, approximate volumes, prismoidal formula, etc. Approximate computation, graphs, and graphical computation, logarithms and logarithmic computation, areas and approximations of areas, use of slide rule. DAVIS.
- 3. ELEMENTARY MINE ACCOUNTING. Elementary accounting in general; applications to mine accounts; primary records, labor, supply, mine and mill products, and fund sheets; secondary records, invoice, labor and supply, mine and mill cost sheets, trial balance. LAMBERT.

- 4. ALGEBRA. Equations with one, two, or more unknown quantities, inequalities, involution and evolution, theory of exponents, surds, quadratic equations both numerical and literal, equations with one or more unknown quantities that can be solved by means of quadratic equations, progressions. DAVIS.
- 5. ALGEBRA AND TRIGONOMETRY. Functions and functional notation, factor and remainder theorems, factors and values of functions, determinants, development of functions, theory of equations, permutations and combinations; trigonometric ratios, right triangles, general definitions of trigonometric functions, analytic relations, addition formulas, trigonometric equations, and oblique triangles. DAVIS.
- 6. SPHERICAL TRIGONOMETRY AND ANALYTICAL GEOMETRY. General properties and solution of spherical triangles; systems of coördinates, loci, equations and properties of the straight line, transformation of coördinates, equations and properties of conics, general equations of the second degree, higher plane curves, space coördinates, point, plane, straight line, quadric surfaces. DAVIS.
- CALCULUS. Nature of differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, expansion of functions, indeterminate forms, partial derivatives, change of variable. LAMBERT.
- 8. CALCULUS. Elementary integration, undetermined coefficients, rational fractions, rationalization, formulas of reduction, hyperbolic functions, some differential equations of mechanics. LAMBERT.
- MECHANICS. Composition and resolution of forces, laws of equilibrium, practical applications, rectilinear motion, circular motion, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy; elementary mechanics of materials. LAMBERT.
- 10. MECHANICS. Mechanical and elastic properties of materials of construction; beams, shafts, columns, reinforced concrete, hollow cylinders and spheres, rollers, plates; theory of internal stress. LAMBERT.
- **II-I2.** MINE PLANT. Discussion of the machinery and appurtenances employed in the equipment of mines. Air compression, mechanical features of hoisting, pumping, ventilation, underground transportation. Electricity applied to mining. COMSTOCK.
- 13. HYDRAULICS AND WATER-POWER. Laws of the equilibrium, pressure, and flow of liquids, estimation of power to be developed at a power site, dams and appendages, theory of water wheels and turbines. speed control, power-house equipment, transmission: COMSTOCK.
- 15. ENGINEERING CONSTRUCTION. Theory of structures, loading, analytic and graphic resolution of stresses in framed structures, stresses in mining structures, design of mining structures. LAMBERT.

- 16. MINE PLANT DESIGN. A study of power possibilities, costs, etc., and designs of a power plant, surface equipment, and structures for a mine. COMSTOCK.
- MILL AND SMELTER DESIGN. A study of the construction and mechanical equipment of mills and smelters in connection with thesis work. COMSTOCK.

MINING ENGINEERING

Professor Edward P. McCarty; Instructor John F. Murphy.

		Lect. or Lab.		
No.	Title	rec. hrs. hrs.	Required of	Prereq. courses
Ι.	Mine Surveying	3	All Soph.	Math. 6
2.	Mine Surveying	3	All Soph.	I
2f.	Field Work		All Soph.	2
4.	Mine Mapping	б	All Jr.	2Í
б,	Mining		All Soph.	
9.	Mining	5	All Jr.	6
10.	Mining	5	All Jr.	9
ıof.	Practical Mining	2 wks	All Jr.	Satisfactory
				completion
				of Jr. year
II.	Mining	5	Sr. E. M. & E. M. (Geol.)	10
Ι2.	Mining	5	Sr. E. M. & E. M. (Geol.)	II
I 3.	Thesis	2	Sr. E. M.	ıof
I4.	Thesis		Sr. E. M.	13

- I, 2. MINE SURVEYING. Computation, platting, and problems with special reference to mine surveying. MURPHY.
- 2f. FIELD WORK. Practice in general surveying during the month of May. Practice in underground surveying during the first two weeks of June. This work is given on the Iron Ranges. McCarty, Murphy.
- 4. MINE MAPPING. Mine mapping in accordance with prevalent practice in the western mining districts. Ore and stripping estimates and mine maps based on Mesabi Range practice. MURPHY.
- 6. MINING. Examination and testing, and use of explosives. MURPHY.
- 9. MINING. Occurrence of ore bodies, prospecting, churn and diamond drilling, drilling, blasting, excavation, surface transportation, tunneling and drifting. McCARTY.
- 10. MINING. Shaft-sinking, support of underground excavations, hoisting, drainage, ventilation, underground transportation. McCARTY.
- **IOF. PRACTICAL MINING.** Study of mining operations. Mine plant and equipment and practical mining work; a mine to be selected by department during months of May, June, July, and August. McCARTY COMSTOCK, and Assistants.

- 11. MINING. Open pit, quarrying, underground methods, coal mining. mining alluvial deposits. McCARTY.
- 12. MINING. Mine management, mining law, economics of mining, mine examination, mine sanitation and hygiene. MCCARTY.
- 13, 14. THESIS. Conference. Design and specifications of mining details required in thesis study. McCARTY and Assistants.

PHYSICS

Professors Henry A. Erikson, Anthony Zeleny; Instructor E. O. Dieterich.

COURSES

			Lect. or	Lab.		
No.	Ti	le	rec. hrs.	hrs.	Required of	Prereq. courses
Ι.	General	Physics	3		All Soph.	Math. 6
2.	General	Physics	3		All Soph.	I
3.	General	Lab. Practice		2	All Soph.	With I
4.	General	Lab. Practice	· · · · · ·	2	All Soph.	With 2

- I. GENERAL PHYSICS. Mechanics of solids and fluids, sound and heat. Treatment experimental rather than mathematical; the fundamental principles. ERIKSON. DIETERICH.
- 2. GENERAL PHYSICS. Light, electricity, and magnetism. Treatment experimental; the fundamental principles, including those of radioactivity, ionization, X-radiation, and the electrical constitution of matter. ERIKSON, DIETERICH.
- 3. GENERAL LABORATORY PRACTICE. Physical measurements in the mechanics of solids and fluids, and in heat and sound, giving the student a knowledge of experimental methods, and an intimate acquaintance with the fundamental facts of the subject. DIETERICH.
- 4. GENERAL LABORATORY PRACTICE. Physical measurements in light, electricity, and magnetism. DIETERICH.

ROMANCE LANGUAGES

Professor Everett Ward Olmsted; Assistant Professor Jules T. Frelin; Instructor E. H. Sirich.

COURSES

				Prereq.
No.	Title	Rec. hrs.	Required of	courses
I.	Beginning French	3	Jr. E. M. (Geol.)	
2.	Beginning French	3	Jr. E. M. (Geol.)	I
3.	Intermediate French	3	Jr. or Sr. E. M. (Geol.)	. 2
4.	Intermediate French	3	Jr. or Sr. E. M. (Geol.)	3
5.	Survey French Lit	3	Sr. E. M. (Geol.)	4
6.	Survey French Lit	3	Sr. E. M. (Geol.)	5

1-2. BEGINNING FRENCH. Stress on accurate pronunciation, reading, reading vocabulary, and the essentials of grammar. Daily oral and written exercises (dictation and reproduction in French). FRELIN, SIRICH.

38

- 3-4. INTERMEDIATE. French grammar, composition, and reading; increased use of French in the classroom. Selections from modern prose and poetry. FRELIN.
- 5-6. GENERAL SURVEY OF FRENCH LITERATURE. Lectures, recitations, and assigned readings. Designed to cover the whole period in historical outline. Selections from representative authors. OLMSTED.

.

STUDENTS SENIORS-11

Abrahamson, Hialmar, Wadena Aronson, Sam, St. Paul Buresch, Charles E., Lakefield Craig, John J., Minneapolis Davies, Fred A., Minneapolis Dovre, Adolph, Sleepy Eye

Anderson, Edwin H., Oakes, N. D. Cassilly, Thomas E., St. Paul Coryell, Lewis S., Osceola, Wis, Dennis, Richard C., Ashland, Wis. Dopp, Lawrence, Ashland, Wis. Elson, William H., St. Paul Ernster, Omer F., Brainerd Fearing, Edward J., Little Falls, Minn. Krogh, Alvin T., Minneapolis Lee, Oscar, St. Paul

McDermid, Archie, Duluth McHardy, Roy H., Minneapolis Nord, Harry H., Ashland, Wis.

JUNIORS-15

Kwong, Yih-Kum, Shanghai, China Levorsen, A. Irving, Fergus Falls Peterson, Paul A., St. Paul Shattuck, Warner A., Bisbee, Ariz. Sweetman, Edwin A., Aitkin Wallace, Carleton S., Minneapolis Woodruff, John J., Minneapolis

SOPHOMORES-26

Ainsworth, Robert E., Minneapolis Allard, Raymond, St. Paul Armstrong, Harold K., Minneapolis Bailey, A. Kittredge, Minneapolis Clark, Fred E., Minneapolis Copeland, William A., St. Paul Cowin, Percy G., Minneapolis Dane, Carleton M., St. Paul Dowdell, Ralph L., St. Paul Foley, Lyndon L., Minneapolis Frank, Harry, Minneapolis Gannett, Roger W., Minneapolis Hicks, John, St. Paul

Hsieh, Chung, Kirin, China Hubbard, William E., Duluth Ingersoll, Guy E., Hibbing Jerrard, Walter L., St. Cloud Johnson, Russell V., Lanesboro Lee, Liang, Ningyuen, China McGilvra, Donald, Minneapolis Miao, Yun Tai, Yunnanfu, China Moga, John A., St. Paul Quinn, Howard E., Melrose Sinclair, Gilbert, Minneapolis Stickney, Robert A., Englewood, N. J. Sullivan, Daniel C., Stillwater

FRESHMEN-17

Abramson, Jake, Minneapolis Barr, Joseph C., Riverton Calhoun, Robert, Minneapolis Donaghue, Abner J., Minneapolis Flom, Frank, Minneapolis Frank, Elden J., Duluth Frellsen, Sidney A., Minneapolis Gandrud, Bennie W., Glenwood Goldberg, Bert, St. Paul

Goldberg, Samuel B., St. Paul Hosted, Joseph, Duluth Hoving, George E., Fergus Falls Moriarty, Howard M., Minneapolis Mellem, Walter R., St. Paul Mullowney, Marion F., Minneapolis Newton, Valentine H., New York Wadsworth, Lawrence H., Minneapolis

FIRST YEAR-7

Berlin, Hale D., Wimbledon, N. D. Case, Carlos C., Minneapolis Johnsen, Trygve, St. Paul Johnston, Kenneth A., St. Paul

Rydlun, Edwyn, Minneapolis Salet, Harry N., St. Paul Thoeni, Victor T., Wykoff, Minn.

1917/18

The Bulletin of the University of Minnesota

The School of Mines Announcement for the Year 1917-1918

DRIVERSITY OF GLIROIS LIBRA.

and the second of

Catalog Series No. 10 Vol. XX No. 26 July 16 1917

Entered at the post-office in Minnecpolis as second-class matter Minneapolis, Minnesota

1917	1918			
JULY	JANUARY	JULY		
Su Mo Tu W Th Fr Sa	Su Mo Tu W Th Fr Sa	Su Mo Tu W Th Fr Sa		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
AUGUST	FEBRUARY	, AUGUST		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
SEPTEMBER	MARCH	SEPTEMBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
OCTOBER	APRIL	OCTOBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
NOVEMBER	MAY	NOVEMBER		
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 DECEMBER	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 JUNE	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 DECEMBER		
		1 2 3 4 5 6 7		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2) 30 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

UNIVERSITY CALENDAR

		19	917-1918
1917 September	26	Wednesday	Registration closes for all students
September		Week	0
September	- 26)	Week	Fees payable for all students
October	3∫	Manda	Time and a second secon
October	I	Monday	First semester evening extension classes, begin
October	2-9	Week	Examinations for removal of conditions (except for Colleges of Agriculture and Forestry), and entrance exami- nations
October	10	Wednesday	First semester begins
October	15	Monday	Agricultural College, farm experience examinations
October	18	Thursday	School of Agriculture, first term begins
October	29	Monday	Senate meeting, 4:00 p.m.
November	29 5	Monday	Dairy School opens
November	5 28	Wednesday	Thanksgiving recess begins 9:00 p.m.
December	20 I	Saturday	Dairy School closes
December	. 3	Monday	Thanksgiving recess ends 8:00 a.m.
December	3-8	Week	Second semester condition examina-
December	3-0	WCCK	tions, Colleges of Agriculture and Forestry
December	3-8	Week	Short course for ice-cream makers
December	5	Wednesday	Medical School second quarter begins
December	20	Thursday	Senate meeting, 4:00 p.m.
December	21	Friday	School of Agriculture, first term closes
December 1918	21	Friday	Christmas vacation begins 9:00 p.m.
December	31)	Week	Farmers' and Home Makers' Week
January	55		Short Course
January	2	Wednesday	Christmas vacation ends 8:00 a.m.
January	2	Wednesday	School of Embalming begins, eight
0			weeks' session
January	8	Tuesday	School of Agriculture, second term begins
January	25	Friday	First sèmester evening extension classes
Fahrungen		Monday	close Second semester registration closes
February	4	~	0
February	4	Monday	Second semester evening extension classes begin
February	4-9	Week	Merchants' Short Course
j	4-9	AL COLL	
February	4-9 11	Monday	Final examinations begin
			Final examinations begin Payment of fees for second semester

1917-1918

February	12	Tuesday	Lincoln's Birthday; a holiday
February	18	Monday	Second semester begins
February	21	Thursday	Senate meeting, 4:00 p.m.
February	22	Friday	Washington's Birthday; a holiday
March	27	Wednesday	School of Agriculture closes
March	28	Thursday	Easter recess begins 9:00 p.m.
April	I	Monday	Easter recess ends 8:00 a.m.
April	1- 6	Week	Boys' and Girls' Week
April	1-6	Week	Condition examinations in certain col-
•			leges
April	15	Monday	Medical School fourth quarter begins
April	. 30	Tuesday	Traction Engineering Short Course be-
			gins
May	16	Thursday	Senate meeting, 4:00 p.m.
May	24	Friday	Second semester evening extension
			classes close
May •	30	Thursday	Memorial Day; a holiday
May	31	Friday	Traction Engineering Short Course closes
June	8	Saturday	Final examinations begin 2:00 p.m.
June	15	Saturday	Second semester closes
June	16	Sunday	Baccalaureate service
June	17	Monday	Senior Class Day exercises
June	19	Wednesday	Alumni Day
June	20	Thursday	Forty-sixth Annual Commencement
June	21	Friday	Summer vacation begins
June	24	Monday	Summer Session begins

The University year for 1918-19 will begin Tuesday, September 17. Classes will begin September 25.

Program of Supplementary Examinations

Tuesday	Oct. 2	~	Mechanics and Mathematics
		2-5 p.m.	Mining Engineering Subjects
Wednesday	Oct. 3	9 - 12 a.m.	Chemistry
		2-5 p.m.	Drawing and Descriptive Geometry
		2-5 p.m.	Mechanical Engineering Subjects
Thursday	Oct. 4	9 - 12 a.m.	Metallurgical Subjects
		2-5 p.m.	Physics
Friday	Oct. 5	9 -12 a.m.	Electrical Engineering Subjects
		2-5 p.m.	Geology and Mineralogy

4

THE SCHOOL OF MINES

FACULTY

MARION LEROY BURTON, D.D., Ph.D., LL.D., President 1005 5th St. S. E. CYRUS NORTHROP, LL.D., President Emeritus 510 10th Ave. S. E. WILLIAM R. APPLEBY, M.A., Dean and Professor of Metallurgy 928 5th St. S. E. OSCAR C. BURKHARD, M.A., Assistant Professor of German 719 E. River Road PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy 217 Union St. S. E. ELTING H. COMSTOCK, M.S., Professor of Mine Plant and Mechanics 1416 7th St. S. E. WILLIAM H. EMMONS, Ph.D., Professor of Mineralogy and Geology 611 11th Ave. S. E. HENRY A. ERIKSON, Ph.D., Professor of Physics 424 Harvard St. S. E. JOHN J. FLATHER, Ph.B., M.M.E., Professor of Mechanical Engineering 315 11th Ave. S. E. GEORGE B. FRANKFORTER, Ph.D., Professor of Chemistry 525 E. River Road JULES T. FRELIN, B.A., Assistant Professor of Romance Languages 1206 5th St. S. E. ROBERT W. FRENCH, B.S., Assistant Professor of Drawing 1018 16th Ave. S. E. FRANK F. GROUT, M.S., Associate Professor of Geology and Mineralogy 617 4th St. S. E. SAMUEL L. HOYT, E.M., Ph.D., Assistant Professor of Metallography 416 8th Ave. S. E. A. WALFRED JOHNSTON, M.A., Assistant Professor of Geology 803 University Ave. S. E. WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive 722 10th Ave. S. E. Geometry EDWIN M. LAMBERT, M.E., Assistant Professor of Mine Plant and Mechanics 1086 12th Ave. S. E. FRANKLIN R. MCMILLAN, C.E., Assistant Professor of Structural Engineering 524 8th Ave. S. E. JOHN F. MURPHY, Associate Professor of Mining 519 7th Ave. S. E. EVERETT W. OLMSTED, Ph.D., Professor of Romance Languages 901 5th St. S. E. LEVI B. PEASE, M.S., Professor of Metallurgy 1070 16th Ave. S. E. TERENCE T. QUIRKE, E.M., Ph.D., Assistant Professor of Geology 315 11th Ave. S. E. FRANK B. ROWLEY, Assistant Professor of Experimental Engineering 217 Beacon St. S. E. WILLIAM T. RYAN, E.E., Assistant Professor of Electrical Engineering 3228 4th St. S. E. CARL SCHLENKER, B.A., Professor of German 514 11th Ave. S. E. GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Professor of Electrical Engi-717 E. River Road neering S. CARL SHIPLEY, B.S., M.E., Assistant Professor of Machine Construc-1517 E. River Road CHARLES F. SHOOP, B.S., Assistant Professor of Experimental Engineering 811 Fulton St. S. E. CHARLES F. SIDENER, B.S., Professor of Chemistry 1320 5th St. S. E. CLINTON R. STAUFFER, Ph.D., Associate Professor of Geology 1023 University Ave. S. F. STERLING TEMPLE, M.A., Assistant Professor of Chemistry 1758 Blair St., St. Paul ANTHONY ZELENY, Ph.D., Professor of Physics 613 Fulton St. S. E. THOMAS M. BRODERICK, Ph.D., Instructor in Geology 3204 Portland Ave. ANDERS J. CARLSON, Instructor in Mining 520 Delaware St. S. E. CHARLES H. CLEVENGER, M.S., Instructor in Mathematics and Mechanics 1214 7th St. S. E. EDWARD W. DAVIS, B.S., Instructor in Mechanics and Mathematics 979 14th Ave. S. E. ERNEST O. DIETERICH, Ph.D. Instructor in Physics 809 Essex St. S. E. GERHARD DIETRICHSON, Ph.D., Instructor in Chemistry 429 Walnut St. S. E. J. THEODORE GEISSENDOERFER, Ph.D., Instructor in German 967 14th Ave. S. E. ERVIN W. McCullough, E.M., Instructor in Metallurgy 934 E. Bayliss Ave., St. Paul HOWARD D. MYERS, C.E., Instructor in Drawing 516 Oak St. S. E. EDMUND NEWTON, E.M., Instructor in Metallurgy 941 14th Ave. S. E. EDWARD P. QUIGLEY, Instructor in Forge Work 2923 Chicago Ave. WILLIAM H. RICHARDS, Instructor in Carpentry 1423 W. 27th St. EDWARD H. SIRICH, Instructor in Romance Languages 321 14th Ave. S. E. RICHARD WISCHKAEMPER, M.A., Instructor in German 979 14th Ave. S. E. ARNOLD KIRKPATRICK, Ph.B., Assistant in Chemistry 1703 Taylor Ave., St. Paul 1514 W. 25th St. ELOISE WEBSTER, Librarian

GENERAL INFORMATION

The School of Mines was established by the Board of Regents in 1888, upon recommendation of the General Faculty of the University. The buildings and laboratories of the School are located on the main campus of the University. The mining districts of Minnesota are within a few hours, by rail, from Minneapolis. The heartiest coöperation exists between the various mine managements and the School, so that the mining properties are at all times open to parties from the school for observation and study trips. Practical surveying, geological field work, and underground work are carried on in one or more of the districts. Students in the School of Mines have, therefore, all the advantages afforded by a large university combined with ample opportunity for field observation and experience.

The School of Mines occupies the new building provided by the Legislature of 1913. In the basement are the assay and electro-metallurgical laboratories, together with machinery room, instrument room, balance room, furnace rooms, and necessary storerooms. On the first floor are the administrative offices, offices and lecture rooms of the departments of Metallurgy and Mine Plant and Mechanics. On the second floor are the offices, lecture rooms, and drafting rooms of the department of Mining, the ore dressing laboratory, and the library of the school. On the third floor are the offices, laboratories, and lecture rooms of the department of Metallography, junior drafting room, photographic dark rooms, blue printing room, and offices and computing rooms for the branch of the Experiment Station serving the Tax Commission.

DEGREES

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of Engineer of Mines (E.M.), Engineer of Mines in Geology [E.M. (Geology)], and Metallurgical Engineer (Met.E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four or five years, and vice versa, provided such candidate completes an additional year's work at the School and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and Architecture, and in the School of Analytical and Applied Chemistry, who contemplate taking a degree in this School after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

7

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thoro courses in mechanics, mathematics, surveying, physics, chemistry, and the necessary theory and practice of structural, mechanical and electrical engineering.

(a) Geology-to determine the location of the ore. (b) Mineralogyto determine its nature. (c) Assaying-to determine if it has value for treatment. (d) Mining Engineering-to furnish material for treatment. (e) Ore Testing-to determine best methods of treatment. (f) Ore Dressing-furnishing products for metallurgical treatment. (g) Metallurgy-smelting and refining ores and ore dressing products; reduction to metals.

EXPERIMENT STATION

The School of Mines Experiment Station has been recently established to promote the development of the mining and mineral resources of the state, to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates for the Tax Commission and to do such other work along the lines above outlined as may be requested by other state departments. Coöperation has been effected with the Minnesota Geological Survey and the School of Chemistry.

The Experiment Station is prepared to assist citizens interested in these lines of work; to assay specimens of ore, rocks, clays, and minerals found within the state free of charge.

In submitting samples the sender must state the exact location where each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the office of the Station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, The University of Minnesota, Minneapoliś, Minnesota.

LIBRARY

The library occupies a well-lighted room, 55 feet by 61 feet, on the second floor of the School of Mines building. The books have been carefully selected and form a working collection of great value, not only to the faculty and students, but also the mining men of the state. Only books relating to mining, metallurgy, metallography, geology, and allied subjects are shelved in this library, the general University library as well as the public libraries of Minneapolis and St. Paul serving as reserve collections. The library is especially rich in complete sets of periodicals, transactions, and the reports of state and foreign mining departments. Foreign technical literature is well represented. A card index is kept of all articles of value and interest appearing in the leading periodicals.

ADMISSION

The courses leading to the degrees of Engineer of Mines, Engineer of Mines (in Geology), and Metallurgical Engineer may be completed in either four or five years. Students may enter the School of Mines without preparation in Higher Algebra and Solid Geometry. Such students must enter the five-year courses. It is recommended that students who come poorly prepared in Mathematics enter the five-year courses.

Students may be admitted to the School of Mines either by certificate or examination, or both.

ADMISSION BY EXAMINATION

Entrance examinations are offered at the University during registration week, October 2 to 5. Candidates entering by this method must pass examinations in fifteen units so chosen as to satisfy the requirements outlined below. Certificates from the College Entrance Examination Board and from the High School Board are accepted in lieu of examinations in the subjects they represent. Those desiring to take examinations should notify the Registrar of the University in writing not later than August 31.

ADMISSION BY CERTIFICATE

Graduates of the following courses, provided their preparation satisfies the requirements outlined below, may be admitted.

I. Any four-year course of a Minnesota state high school or other accredited school in the state.

2. A four-year course of schools in any other state accredited to the state university of that state.

3. The Advanced Latin and Advanced English courses of the Minnesota state normal schools.

The applicant for admission should request the principal or superintendent to forward to the Registrar of the University a complete tran-

10

script of his high-school or preparatory-school record showing the number of weeks and hours per week spent upon each study, with the grades entered as *passed*, *passed* with credit, or *passed* with honor. Credential blanks prepared by the University must be used; these blanks may be secured upon application to the Registrar. Upon receipt of the credentials at the University the Registrar will notify the applicant with regard to his admission.

ENTRANCE REQUIREMENTS

FIVE-YEAR COURSES

English, three units; Elementary Algebra and Plane Geometry, one unit each; ten additional units, of which not more than four may be in Group F.

FOUR-YEAR COURSES

Same as five-year courses with the addition of one-half unit each of Higher Algebra and Solid Geometry. It is recommended that students who enter these courses review Higher Algebra and Solid Geometry. Those unable to carry freshman mathematics satisfactorily will be required to re-register in the five-year course.

LIST OF ENTRANCE SUBJECTS

The term *unit* means not less than five recitations of forty minutes each per week for a period of thirty-six weeks. In manual subjects and kindred courses, it means the equivalent of ten recitation periods per week for thirty-six weeks.

GROUP A. ENGLISH. Four units.

GROUN B. LANGUAGES. Latiń, Greek, German, French, Spanish, Scandinavian, one to four units each.

GROUP C. HISTORY AND SOCIAL SCIENCES. Ancient and Modern History, one unit each; English and Senior American History, one-half unit each; American Government, Economics, Economic History of England, and Economic History of the United States, one-half unit each; Commercial Geography, and History of Commerce, one-half or one unit each.

GROUP D. MATHEMATICS. Elementary Algebra and Plane Geometry, one unit each; Higher Algebra, Solid Geometry, and Trigonometry, one-half unit each.

GROUP E. NATURAL SCIENCES. Physics and Chemistry, one unit each; Botany and Zoology, one-half or one unit each; Physiology, Astronomy, Geology, and Physiography, one-half unit each.

GROUP F. VOCATIONAL SUBJECTS. Business Law and Business Arithmetic, one-half unit each; Elementary and Advanced Bookkeeping, oneunit each; Stenography and Typewriting, one or two units. Freehand Drawing, Mechanical Drawing, and Shopwork, one or two units each. Agriculture, one to four units. Normal Training subjects, one to three units, provided the applicant has had one year of subsequent teaching experience.

DESCRIPTION OF SUBJECTS ACCEPTED FOR ADMISSION

A description of the subjects accepted for admission to the University will be found in the Bulletin of General Information, which will be sent to any address upon application to the Registrar, The University of Minnesota, Minneapolis.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

ADMISSION TO ADVANCED STANDING

This University accepts records from all reputable colleges and universities for credit to advanced standing. Such records are accepted as far as they are equivalent to the work done in this institution. In bringing records from other institutions, the certificate must be upon the official blank of the institution granting the certificate and should show:

- (a) The subject studied; if a language, the books read, etc.
- (b) The number of weeks and hours per week spent upon each subject.
- (c) Ground covered in laboratory work in case of laboratory subjects.
- (d) The result. The exact grades should be stated, accompanied by an explanation of the marking system employed.

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrollment Committee of the School of Mines.

EXPENSES

One half of the Annual Incidental Fee of \$55, which includes all laboratory charges, is payable at the opening of each semester. Cards entitling the student to admission to classes will not be issued until the fees have been paid. Books and supplies for each year of the course cost approximately \$25. Field-work expense during the sophomore year is estimated at \$150 and for the junior year at \$225.

DEPOSIT FEE

At the beginning of each year, in addition to the first semester incidental fee, a deposit fee of five dollars is required of every student to cover the following items: A penalty fee of one dollar (\$1) must be paid by all students who register or pay fees after the prescribed time. (See calendar, page 3.) After the day previous to that on which classes begin, the penalty for delay increases at the rate of twenty-five cents a day.

The unused balance of the deposit fee will be returned at the end of each year. If, at any time during the college year, the amount of charges against a student exceed the amount of the deposit, a second fee of five dollars (\$5) will be required.

SPECIAL FEES

The following special items may be included in the expenses of a student:

Minnesota Union membership, required\$1 per semester	
Special examination for removal of condition, at other than the	
set time 5.00	
Examination on subject taken out of class 5.00	
No fee for such examinations on first entering the Univer-	
sity, if taken within the first six weeks.	
Military uniform, required of all freshmen and first-year stu-	
dents	
Gymnasium suit 5.00	

THE ELLIOT SCHOLARSHIP LOAN FUND

To fulfill the wish of the late Dr. A. F. Elliot to aid young men who find their efforts to obtain a practical education embarrassed through lack of means, the sum of \$5,000 was placed in the hands of the Board of Regents as a scholarship fund. The income from this fund is loaned students in the School of Mines on the following conditions: the financial needs of the applicant, his scholarship, moral character, enthusiasm shown in his work, and promise of usefulness in his profession. When money is available, it may be loaned to pay the expenses of worthy students during sickness. The loans are to be repaid, without interest, at the earliest convenience of the recipients.

GRADUATION

Students completing courses of study to the satisfaction of the Faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examinations in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least one full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the Faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examinations held at the end of the second semester. Irregular attendance will debar a student from entering all final examinations.

THESIS

The thesis work is intended to bring in review and connect the work in Mining and Metallurgy, Geology and Mineralogy, Mechanical and Electrical Engineering, Mathematics and Mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology, for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem, for candidates for the degree of Metallurgical Engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

Prior to the reopening of Field Work at the School of Mines, Tuesday, October 2, 1917, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on the project must be under way by December I. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the School.

SPECIAL NOTES

Students failing to receive a semester mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the Registrar his average in all subjects and present himself for supplementary examinations, according to the program given on page 4.

Failure of the Registrar to notify a student of deficiencies will not be accepted as a reason for neglecting to report for necessary supplementary examinations. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

Students failing to receive a semester mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The Faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination at the end of the first or second semester will be given zero on the examinations.

Students whose absences in either semester exceed four weeks in the aggregate are not permitted to take examinations without special permission of the Faculty.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

During the academic year students will be held responsible for the receipt of official communications sent to them through the University post-office. During the summer vacation they will be held responsible for the receipt of such communications sent to the home address given on registration blank for the preceding academic year, unless formal notification of their correct address is filed with the Registrar and the Dean.

COURSES OF STUDY

UNIFORM CURRICULUM TO END OF SOPHOMORE YEAR

The courses leading to the degrees of Engineer of Mines, Engineer of Mines in Geology, and Metallurgical Engineer, are uniform for the first three years of the five-year courses and for the first two years of the four-year courses.

FIVE-YEAR COURSES

FIRST YEAR

First Semester

Chemistry 5*, General and Analytical, 5[†] Mathematics 1, Computation and Mensuration, 4 Mathematics 3, Mine Accounting, 6 Mechanical Engineering 1, Shop Work, 6 Mineralogy 23, Elements of Mineralogy, 8 Military Drill

Second Semester

Chemistry 6, General and Analytical 7, Chem. 5 Mathematics 2, Algebra, 4 Mechanical Engineering 1, Shop Work, 6 Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23 Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23 Military Drill

FRESHMAN YEAR

First Semester

Chemistry 11, Quantitative Analysis, 7, Chem. 5, 6 Drawing 11, Engineering Drawing, 10 Geology 105, Elements of Rock Study, 4, Mineral. 24 Mathematics 5, Algebra and Trigonometry, 6, Math. 1, 2 Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2 Military Drill

^{*} Odd numbers indicate first-semester courses; even numbers, second-semester courses. A combination of the two (e.g., 5-6) indicates courses continuing through the year. In the case of courses repeated the second semester, the suffix *a* indicates first semester; the suffix *b*, second semester.

[†] Figure following the descriptive name of a course indicates number of hours a week. Course names following indicate prerequisite courses.

Second Semester

Chemistry 12, Quantitative Analysis, 7, Chem. 11 Drawing 12, Engineering Drawing, 8, Draw. 11 Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5 Geology 1b, General Geology, 3, Mineral. 24 Geology 106, Petrology, 4, Geol. 105 Metallurgy 4, Wrought Iron and Steel, 3, Met. 3 Military Drill

SOPHOMORE YEAR

First Semester

Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6 Mathematics 7, Calculus, 5, Math. 6 Geology 73, Historical and Economic Geology, 3, Geol. 106 Metallurgy 105, Base Metals, 4, Met. 4 Mining 1, Mine Surveying, 3, Math. 6 Physics 1, General, 3, Math. 6 Physics 3, General Laboratory Practice, 2, with Physics 1

Second Semester

Drawing 14, Drafting, 4, Draw. 13

Mathematics 8, Calculus, 3, Math. 7

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 2, Mine Surveying, 3, Min. 1

Mining 6, I

Physics 2, General, 3, Physics 1

Physics 4, General Laboratory Practice, 2, with Physics 2

 Field Work. Months of May, June, July, and August Mining 2f, Surveying, Min. 2, beginning about May' I Geology 1f, Geol. 1b, 105, beginning about June 15 Underground Mining Work, beginning about July 1

FOUR-YEAR COURSES

FRESHMAN YEAR

First Semester

Chemistry 5, General and Analytical, 5 Drawing 11, Engineering Drawing, 10 Mathematics 5, Algebra and Trigonometry, 6 Mineralogy 23, Elements of Mineralogy, 8 Military Drill

16

Second Semester

Chemistry 6, General and Analytical, 7, Chem. 5 Drawing 12, Engineering Drawing, 8, Draw. 11 Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5 Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23 Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23 Military Drill

SOPHOMORE YEAR

First Scmester

Chemistry 11, Quantitative Analysis, 7, Chem. 5, 6 Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6 Geology 105, Elements of Rock Study, 4, Mineral. 24 Mathematics 7, Calculus, 5, Math. 6 Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2 Mining 1, Mine Surveying, 3, Math. 6 Physics 1, General, 3, Math. 6 Physics 3, General Laboratory Practice, 2, with Physics 1 Military Drill

Second Semester

Chemistry 12, Quantitative Analysis, 7, Chem. 101
Drawing 14, Drafting, 4, Draw. 13
Geology 1b, General Geology, 3, Mineral. 24
Geology 106, Petrology, 4, Geol. 105
Mathematics 8, Calculus, 3, Math. 7
Metallurgy 4, Wrought Iron and Steel, 3, Met. 3
Mining 2, Mine Surveying, 3, Min. 1
Mining 6, 1
Physics 2, General, 3, Physics 1
Physics 4, General Laboratory Practice, 2, with Physics 2
Military Drill
Field Work. Months of May, June, July, and August Mining 2f, Surveying, Min. 2, beginning about May 1
Geology 1f, Geol. 1b, 105, beginning about June 15

Underground Mining Work, beginning about July I

COURSES IN MINING ENGINEERING

COURSES LEADING TO THE DEGREE OF E.M.

FIVE-YEAR COURSES

JUNIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12 Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11 Geology 111, Ore Deposits, 4, Geol. 106 Mechanics 9, 5, Math. 8 Mechanics 11, Mine Plant, 5, Math. 8 Metallurgy 5, Ore Dressing, 4 Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Mech. 10 Geology 112, Problems in Ore Deposits, 4, Geol. 111

Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Metallurgy 6, Ore Dressing 4, Met. 5

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15 Underground Mining Work, beginning about June 1

SENIOR YEAR

First Semester

Electrical Engineering 53, Electric Power, 5, Physics, 3, 4 Mechanics 13, Water Power, 5, Mech. 10 Mechanics 15, Engineering Construction, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8 Mining 11, 5, Min. 10 Mining 13, Thesis, 2, Min. 10f

Second Semester

Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng. 21 Mechanics 16, Mine Plant Design, 10, Mech. 15 Metallurgy 8, Special Problems, 4, Met. 7 Mining 12, 5, Min. 11 Mining 14, Thesis, 12, Min. 13

18

COURSES OF STUDY

FOUR-YEAR COURSES

JUNIOR YEAR

First Semester

Experimental Engineering 21, Steam Laboratory, 4, with Mech. 11 Geology 73, Historical and Economic Geology, 3, Geol. 106, 1b Mechanics 9, 5, Math. 8 Mechanics 11, Mine Plant, 5, Math. 8 Metallurgy 105, Base Metals, 4, Met. 4 Metallurgy 5, Ore Dressing, 4 Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 22, Strength of Materials, 4, with Mech. 10 Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Metallurgy 6, Ore Dressing 4, Met. 5

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15 Underground Mining Work, beginning about June 1

SENIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12 Electrical Engineering 53, Electric Power, 5, Physics 3, 4 Geology 111, Ore Deposits, 4, Geol. 106 Mechanics 13, Water Power, 5, Mech. 10 Mechanics 15, Engineering Construction, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8 Mining 11, 5, Min. 10 Mining 13, Thesis, 2, Min. 10f

Second Semester

Experimental Engineering 24, Experimental Laboratory, 4, Exp. Eng 21 Geology 112, Problems in Ore Deposits, 4, Geol. 111 Metallurgy 8, Special Problems, 4, Met. 7 Mechanics 16, Mine Plant Design, 10, Mech. 15 Mining 12, 5, Min. 11 Mining 14, Thesis, 12, Min. 13

DEPARTMENT OF MINING ENGINEERING

The department is well supplied with samples of the smaller mine equipment, models, drawings, photographs, lantern slides, and mine maps. The lectures treat of prospecting, development, support of excavations, mining methods, mine administration, mining law, and the necessary allied subjects. The courses in Mining Engineering extend through the sophomore, junior, and senior years.

MINE SURVEYING

The work in surveying is given in the sophomore year and is designed solely for mining engineers. The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabi or Vermilion Range. The exact location will be announced in March of each year.

The students will be divided into squads of two to four. Each squad must provide itself with a 6-foot steel tape graduated to hundredths. The duration of the course will be seven weeks ($5\frac{1}{2}$ days of 8 hours each constitute a week). Each student will be required to complete satisfactorily the following exercises and surveys:

I. Chaining and taping

2. Compass work

3. Adjustment and use of wye and dumpy levels

4. Adjustment of mining transit

5. Reading angles

6. Traverse with transit and steel tape

7. Azimuth traverse with stadia

8. Determination of meridian, latitude, and time by solar and stellar observations

9. Survey of mining claim according to the regulations of the U. S. Government

10. Measurement of earthwork

II. Laying out railroad tangents, curves, and crossings

12. Exercises in plane table work and geological surveying

13. The survey of a mine

A full equipment of surveying instruments of the latest and best makes is furnished to each squad for this work.

This is followed by a course in Mine Mapping during the second semester of junior year.

Students who furnish satisfactory evidence of proficiency in this work may be given credit therefor. The department, however, reserves the right in any case to require such students to take a theoretical or a practical examination or both.

COURSES OF STUDY

.

FIELD WORK IN MINING

Sophomore Year

After the close of the field work in Geology (last two weeks in June), members of the sophomore class are required to engage for six weeks in underground mining work on the Minnesota or Michigan iron ranges, for which they may receive wages.

Junior Year

Upon termination of the junior field work in Metallurgy (about May 15), the members of the junior class, who are candidates for the degree of Engineer of Mines, are required to devote two weeks to the study of mine plant and mine operation under the direction of the department. This work will be given in one of the leading western metal mining districts, exact location to be announced in April of each year. Thereafter, during the months of June, July, and August, the student is required to spend at least six weeks in actual underground mining work in the West, for which he may receive wages. The department will render all possible assistance in locating students in districts of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must in person submit this diary to the department on the date of the reopening of field work. In judging the character of the student's field work, equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, October 2, 1917. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering Field Work in Mining and Metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned: Metallurgy, October 2-9, inclusive; Mining and Mine Plant, October 10-22.

On October 22 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 22. These reports shall become the property of the School.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reasons, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

COURSES LEADING TO THE DEGREE OF E.M. (GEOLOGY)

JUNIOR YEAR

First Semester

Geology 73, Historical and Economic Geology 3, 106, 1b Geology 151, Advanced General Geology 3, 73 Geology 131, Advanced Petrology 5, 106, 1b German 1 or 21, 6 or French 1 or 3, 3 Metallurgy 155, Metallography 4 Mining 9, 5, Min. 6 Elective 6

Second Semester

Geology 124, Structural and Metamorphic Geology 3, 73 Geology 132, Advanced Petrology 5, 131 Geology 144, Construction and Interpretation of Geologic Maps 3, 111 Geology 150, Field Geology 8, 124 Geology 152, Advanced General Geology 3, 151 German 3 or 22, 6, German I or 21 or French I or 3, 6 Metallurgy 156, Metallography 4, 155 Mining 10, 5, Min. 9 Mining 4, Mine Mapping 6, Min. 2f

SENIOR YEAR

First Semester

Geology 111, Ore Deposits 4, 73 Geology 11, Paleontology 3, 1b Mining 11, 5, Min. 10 Thesis 2 Elective 12

Second Semester

Geology 112, Problems in Ore Deposits 4, 111 Geology 12, Paleontology 3, 11 Mining 12, 5, Min. 11 Thesis 4 Elective 9

COURSES OF STUDY

FIELD WORK IN GEOLOGY

At the end of the sophomore year mining students are required to devote about three weeks to geologic mapping. This course usually comes after a six weeks' course in surveying and the fields chosen are the Vermilion and Mesabi iron ranges of Minnesota. This work is intended to train the students in the interpretation of field relations and the preparation of geologic maps and cross sections.

The second field course in geology is required only of those students who are candidates for the E.M. in Geology degree. The course begins early in May and is completed in June. The course requires altogether about six weeks work, and the field chosen is the Black Hills region of South Dakota or some other western region. The student is trained in the interpretation of field data; in detailed mapping, underground and on the surface; in the preparation of geologic cross sections through mines; and he may gather material which will serve as a basis for future study in advanced courses the following year. The work conforms with the standards of official surveys as nearly as practicable. At the close of the field season the students are expected to obtain positions with mining companies either as miners or as engineers, or if openings are available, they may enter geological surveys for the season's work.

23

COURSES IN METALLURGY

COURSES LEADING TO THE DEGREE OF MET.E.

FIVE-YEAR COURSES

JUNIOR YEAR

First Semester

Geology 111, Ore Deposits, 4, Geol. 106

Mechanics 9, 5, Math. 8

Mechanics 11, Mine Plant, 5, Math. 8

Metallurgy 5, Ore Dressing, 4, Geol. 23 and 24

Metallurgy 13, Ore Dressing Lab. 4, Geol. 23 and 24

Metallurgy 153, Metallography 7, Chem. 12, Physics 1 and 2 Mining 9, 5, Min. 6

Second Semester

Geology 112, Problems in Ore Deposits, 4, Geol. 111

Mechanics 10, 6, Mech. 9

Mechanics 14, Met. Plant, 2, Mech. 11

Metallurgy 6, Ore Dressing, 4, Met. 5 and 13

Metallurgy 14, Ore Dressing, Lab. 4, Met. 5 and 13

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August
 Metallurgy 6f, beginning about May 1
 Mining 10f, beginning about May 15
 Practical work in mills and smelters beginning about June 1

SENIOR YEAR

First Semester

Electrical Engineering, 53, Electric Power, 5, Physics, 3, 4 Mechanics 13, Water Power, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 5, 6, 106 Metallurgy 11, Thesis, 8, Met. 106, Met. 5, 6, and 13

Metallurgy 109, Electrometallurgy, 8, Met. 3, 4, 105, 106

Second Semester

Metallurgy 8, Special Problems, 8, Met. 7 Metallurgy 10, Advanced Metallurgy 10, Met. 7 Metallurgy 16, Thesis, 18, Met. 11

COURSES OF STUDY

FOUR-YEAR COURSES

JUNIOR YEAR

First Semester

Geology 73, Historical and Economic Geology, 3, Geol. 106, 1b Mechanics 9, 5, Math. 8

Mechanics 11, Mine Plant 5, Math. 8

Metallurgy 105, Base Metals, 5, Met. 4

Metallurgy 5, Ore Dressing, 4, Geol. 23 and 24

Metallurgy 13, Ore Dressing Lab. 4, Geol. 23 and 24

Metallurgy 153, Metallography 7, Chem. 12, Physics 1 and 2

Mining 9, 5, Min. 6

Second Semester

Mechanics 10, 6, Mech. 9

Mechanics 14, Met. Plant 2, Mech. 11

Metallurgy 6, Ore Dressing 4, Met. 5 and 13

Metallurgy 14, Ore Dressing Lab. 4, Met. 5 and 13

Metallurgy 106, Precious Metals, 5, Met. 105

Metallurgy 154, Metallography 7, Met. 153

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May I Mining 10f, beginning about May 15 Practical work in mills and smelters beginning about June I

SENIOR YEAR

First Semester

Electrical Engineering 53, Electric Power, 5, Physics 3, 4 Geology 111, Ore Deposits, 4

Mechanics 13, Water Power, 5, Mech. 10

Metallurgy 7, Ore Testing 10, Met. 5, 6, 105, and 106

Metallurgy 11, Thesis, 8, Met. 106, Met. 5, 6, and 13

Metallurgy 109, Electrometallurgy, 8, Met. 3, 4, 105, and 106

Second Semester

Geology 112, Problems in Ore Deposits, 4 Metallurgy 8, Special Problems, 8, Met. 7 Metallurgy 10, Advanced Metallurgy 10, Met. 7 Metallurgy 16, Thesis, 18, Met. 11

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use. The practical work consists in visits to smelting and refining works which are accessible. The work in Metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags are shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their reports in detail. This work is offered to students completing the necessary courses in Mineralogy and Chemistry.

ORE DRESSING

The lectures and recitations in Ore Dressing extend through the junior year, and comprise the detailed study of ore dressing and concentrating machinery, together with the study of typical combinations of dressing machines as found in the several mining districts of the United States. In connection with the theoretical work, the ore dressing laboratory and testing plant of the School is utilized for practical illustrations.

ORE TESTING

The lectures treat of the use and purposes of all the machinery connected with the subject, supplemented by detailed drawings. There are complete testing works, connected with the department where the student may see the working of, and handle for himself crushers, rolls, and concentrating machinery, as well as sizing apparatus and hydraulic separators. Sufficiently large amounts of ore are given to make the necessary tests upon the different machines and the students report the best method of treatment. The courses run through the senior year and are required of students both in Mining and Metallurgy. The ore-testing works meet educational, as well as commercial, needs. *Educational.*—The ore-testing plant acquaints the student with the construction and manipulation of the principal typical machines used in the leading ore-dressing establishments of the country. It is here that students in Mining and Metallurgical Engineering get the requisite practical experience. They handle all machines and operate on sufficiently large amounts of material to determine the methods best suited to a given ore to extract the largest amount of metal with the least possible loss.

Commercial.—Ore-testing works are an important factor in mining and metallurgical projects. The commercial object is to determine the best method of treating a given ore so as to yield the largest percentage of the metal it contains at the least possible cost. Samples varying from 500 pounds to car-load lots can be treated by various methods.

As the funds appropriated for the erection of such a plant were sufficient to purchase only the necessary machinery, the business men of Minneapolis generously provided a suitable building. This building, 94 by 66 feet, is built of brick and stone.

FIELD WORK IN METALLURGY

At the end of the junior year students are required to study practical operations at one or more smelters and mills. This work will begin about May I. Not over three weeks' time will be devoted to this work.

Upon termination of the junior field work in Metallurgy and one week in Mining (not later than June I), the members of the junior class who are candidates for the Degree of Metallurgical Engineer, are required to spend at least six weeks in practical work in one or more of the smelters or mills, for which they may receive wages. The department will render all possible assistance in locating students in districts of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must, in person, submit this diary to the department on the date of reopening of field work at the School. In judging the character of the student's field work equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below standard.

Field work will reopen at the School of Mines, Tuesday, October 2, 1917. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering field work in Metallurgy and Mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: Metallurgy, October 2-9, inclusive; Mining and Mine Plant, October 10-22.

On October 22 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling opera-

tions, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 22. These reports shall become the property of the School.

METALLOGRAPHY

Courses in Metallography are offered to seniors who are candidates for the degree of Metallurgical Engineer, students in the Colleges of Science, Literature, and the Arts, Engineering, Chemistry, and the Graduate School.

These courses deal with the microscopic examination of metals, alloys, and ores. The lectures treat of and describe the apparatus used in connection with this subject, the methods of preparing specimens, the physical, chemical, and metallurgical principles involved, and the interpretation of the results of microscopic examination. A collection of specimens, microphotographs, and lantern slides covering wrought iron, low carbon, structural, rail, and tool steels, brasses, bronzes, and other industrial alloys are available for study and comparison. The laboratory course includes the microscopic and pyrometric study of metals, alloys, and ores. The laboratory is equipped with microscopes, electric and portable gas furnaces, and pyrometers of the latest and improved types. A special dark room is available for the preparation of microphotographs.

DEPARTMENTAL STATEMENTS

EXPLANATION OF COURSE NUMBERS

Odd numbers indicate first-semester courses; even numbers, secondsemester courses. A combination of the two (e.g., 5-6) indicates courses continuing through the year. The suffixes a and b apply to one-semester courses offered both semesters, a indicating the first semester and b the second semester (e.g., 3a,b; 4a,b). The suffix f indicates summer field work.

All undergraduate courses are numbered from I to 100. All courses open to undergraduates and graduates are numbered from 101 to 200. Strictly graduate courses are numbered from 201 up.

CHEMISTRY

Professors George B. Frankforter, Charles F. Sidener; Assistant Professor Sterling Temple; Instructor Gerhard Dietrichson; Assistant Arnold Kirkpatrick.

No.		Lect. or ec. hrs.		Required of	Prereq. courses ·
5. (Gen. & Anal. Chemistry	3,	2	All Fr.	
6. (Gen. & Anal. Chemistry	. 1	6	All Fr.	5
11. (Quantitative Analysis	I	6	All Soph.	6
12. (Quantitative Analysis	i I	6	All Soph.	II
24. I	fron & Steel Analysis	. I	6.	Elective	12
25. (Ore & Slag Analysis	I	6	Elective	12
144. H	Electrochemistry	I	. 4	Elective	12

- 5-6. GENERAL AND ANALYTICAL CHEMISTRY. An introduction to descriptive, physical, and metallurgical chemistry and qualitative analysis. FRANKFORTER, TEMPLE, and Assistants.
- **II-I2.** QUANTITATIVE ANALYSIS. A general discussion of quantitative methods, with laboratory work in gravimetric analysis, first semester; followed by a discussion of standard solutions and the necessary stoichiometric calculations with laboratory work in volumetric analysis, second semester. SIDENER, and Assistants,
- 24. IRON AND STEEL ANALYSIS. Includes technical methods for the determination of the common constituents of iron ores, iron, and steel, with training in rapid work. SIDENER, and Assistants.
- 25. ORE AND SLAG ANALYSIS. Rapid technical method for the determination of certain constituents in ores and slags. SIDENER.
- 144. ELECTROCHEMISTRY. A discussion of electro-analytical methods and industrial electrochemical processes, and their underlying principles. DIETRICHSON.

DRAWING AND DESCRIPTIVE GEOMETRY

Professor William H. Kirchner; Assistant Professor Robert W. French; Instructor Howard D. Myers.

COURSES

No.	Title	Lect. or rec. hrs.		Required of	Prereq. courses
	Drawing			All Fr.	
12. Engineering	Drawing		8	All Fr.	II
13. Descriptive	Geometry	. 2	••	All Soph.	12, Math. 6
14. Drafting		**	4	All Soph.	Ì3

- II ENGINEERING DRAWING. Sketching, lettering, representation, parallel and radial projection, elements of engineering representation, details of machines and structures, interpretation of working drawings. KIRCHNER, MYERS.
- 12. ENGINEERING DRAWING. Continuation of Course 11 as outlined above. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. Maps and sketches. Brushes and pen conventions. MYERS.
- 13. DESCRIPTIVE GEOMETRY. Projection; central and special cases, principles and applications, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems. KIRCHNER.
- 14. DRAFTING. Graphics, machine drafting, and structural drafting. Instruction in drafting room methods. FRENCH.

ELECTRICAL ENGINEERING

Professor George D. SHEPARDSON; Assistant Professor William T. RYAN.

COURSES

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
53. Electric	Power	- 2	2	Sr. E. M. & Met. E.	Physics 3, 4

53. ELECTRIC POWER. Elements of theory and practice of electrical measurements, wiring, dynamos, motors, and electric lighting. RYAN.

EXPERIMENTAL ENGINEERING

Assistant Professors Charles F. Shoop, Franklin R. McMillan, Frank B. Rowley.

No.	Title	Lect. or rec. hrs.		Required of	Prereq. courses
21. Steam	Laboratory		4	Jr. E. M. & Met. E.	With Math. 11
22. Streng	th of Materials.		4	Jr. E. M. & Met. E.	With Math. 10
24. Experi	imental Laborato	ry	4	Sr. E. M. & Met. E?	21

- 21. STEAM LABORATORY. Exercises in valve setting, indicator practice, calibration of steam gauges, efficiency of screws and hoists. Shoop.
- 22 STRENGTH OF MATERIALS. Laboratory work, investigating the strength and physical qualities of iron, steel, brass, cropper, belting, chains, beams, brick, and stone. MCMILLAN.
- 24. EXPERIMENTAL LABORATORY. Hydraulic measurements. Calibration of weirs, nozzles, meters, and other hydraulic apparatus, calorimetry; tests of pumps, engines, and boilers. RowLey.

GEOLOGY AND MINERALOGY

Professor William H. Emmons; Associate Professors Clinton R. Stauf-FER, FRANK F. GROUT; Assistant Professors A. Walfred Johnston, TERENCE T. QUIRKE; Instructor Thomas M. BRODERICK.

No. Title rec. hrs. hrs. Required of P	rereq. courses
th. General Geology 3 All Soph.	24
If. Field Work 2 wks. All Soph.	ib and 105
11. Paleontology 3 Sr. E. M. (Geol.)	ıb
12. Paleontology 3 Sr. E. M. (Geol.)	II
23. Elements of Mineralogy 4 4 All Fr.	
24. Descriptive Mineralogy 2 2 All Fr.	23
73. Histor. & Econ. Geology 3 All Jr.	1b and 105
105. Elements of Rock Study 4 All Soph.	24
106. Petrology	105b
111. Ore Deposits 4 Sr.E.M.&E.M. (Geol.)	106
112. Problems in Ore Deposits 4 Sr.E.M.&E.M.(Geol.)	III
124. Struct. & Metamorph. Geol. 3 Jr. E. M. (Geol.)	73 and 105
131. Advanced Petrology 2 .3 Jr. E. M. (Geol.)	106, 1b
132. Advanced Petrology 2 3 Jr. E. M. (Geol.)	131
137. Testing Econ. Minerals 1 4 Elective	24, 73
140. Applied Petrology 1 4 Elective	See statement
144. Construction & Interpreta-	
tion of Geologic Maps 4 Elective	73
150. Field Geology Jr. E. M. (Geol.)	124
151. Advanced General Geology. 3 Jr. E. M. (Geol.)	73
152, Advanced General Geology. 3 Jr. E. M. (Geol.)	151
246. Pre-Cambrian Geology 3 .3 Elective	124
247. Geol. & Exploration of Lake	
Superior region 3 Elective	124

- **ID. GENERAL** GEOLOGY. A synoptical treatment of materials of the earth and of geologic processes. Physiographic, dynamic, and structural geology, with a brief introduction to Historical Geology. JOHNSTON.
- If FIELD WORK. About two weeks in June are spent in geologic mapping of selected areas in the iron districts of Minnesota. Involves preparation of geologic maps, and written reports.
- **II.** PALEONTOLOGY. A study of fossil forms with special reference to those of geological importance. STAUFFER.

- 12. PALEONTOLOGY. Faunas and their correlation. A continuation of Course 11. Stauffer.
- 23. ELEMENTS OF MINERALOGY. The crystal systems; morphological, physical, and chemical character of minerals; occurrence, genesis, and uses of minerals; classifications and description of common minerals. Determinative work in laboratory, blowpipe analysis, sight identification. BRODERICK, GROUT.
- 24 DESCRIPTIVE MINERALOGY. A continuation of Course 23, special attention being given to metalliferous and rock-forming minerals. Laboratory determination and sight identification. The use of the goniometer and microscope. Laboratory work, reference reading, and field excursions. BRODERICK, GROUT.
- 73. HISTORICAL AND ECONOMIC GEOLOGY. (a) Historical Geology. The geologic history of North America, with special reference to its syngenetic mineral deposits. (b) Economic Geology. A study of the non-metallic minerals of economic value, and discussions of the geologic guides to prospecting for these deposits. EMMONS, QUIRKE.
- 105. ELEMENTS OF ROCK STUDY. The occurrence and genesis of igneous sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and alteration. The classification and methods of identification and description of rocks. GROUT, BROD-ERICK.
- 106. PETROLOGY. The identification and study of minerals and rocks by optical methods; the study of igneous rocks, crystalline schists, and metamorphic rocks. The origin and classification of rocks. GROUT, BRODERICK.
- III. ORE DEPOSITS. The nature, distribution, and genesis of ore deposits of the United States; relations of ore deposits to geologic structure; the deformation and superficial alteration of ore deposits. EMMONS.
- 112. PROBLEMS IN ORE DEPOSITS. Field excursions, map work, lectures on field and laboratory methods. EMMONS.
- 124. STRUCTURAL AND METAMORPHIC GEOLOGY. The conditions, processes, and results of metamorphism; structural features resulting from deformation under varying conditions of load. JOHNSTON.
- 131-132. ADVANCED PETROLOGY. Advanced optical methods. Criteria for rapid identification of minerals and rocks., The uses of schedules and tables. Standard rock types. Regional and genetic studies. Petrographic reports. GROUT.
- 137. TESTING ECONOMIC MINERALS. Methods of determining quality of mineral deposits, described and illustrated by laboratory tests of coal, oil, building stone, and metallic ores. GROUT.

- 140. APPLIED PETROLOGY. To follow or accompany Course 132. Determination of transparent and opaque ores and gangue minerals. Microscopic studies of paragenesis of ores and other mineral associations by means of reflecting light. Practical petrographic problems. GROUT.
- 144. CONSTRUCTION AND INTERPRETATION OF GEOLOGIC MAPS. Hours to be arranged. Methods of geologic examination; problems in construction and interpretation of geologic maps and sections, with special reference to underground mapping of metalliferous areas. QUIRKE.
- 150. FIELD GEOLOGY. Detailed and systematic work conforming with standards of official surveys. Preparation of geologic maps, structure sections, and reports; a study of the paragenesis of ores and their relations to geologic structures. Field for 1917-18, Black Hills, South Dakota. JOHNSTON, EMMONS.
- 151. ADVANCED GENERAL GEOLOGY. Geologic processes and their results; development of the North American continent. STAUFFER.
- 152. Advanced General Geology. A continuation of Course 151. Stauf-Fer.
- 246. PRE-CAMBRIAN GEOLOGY. The problems of pre-Cambrian correlation and structure; the pre-Cambrian stratigraphy of North America. Given in alternate years. Three credits. Not offered in 1916-17. JOHNSTON.
- 247. GEOLOGY AND EXPLORATION OF LAKE SUPERIOR REGION. The geology of the Lake Superior iron districts. The methods used in the exploration of iron ore; interpretation of drill cores; cartographic expression of drill data; models of drilled areas. The principles of magnetic surveying. Three credits. JOHNSTON.

GERMAN LANGUAGE AND LITERATURE

Professor Carl Schlenker; Assistant Professors Oscar C. Burkhard, Samuel Kroesch, Walter R. Myers; Instructors James Davies, Lynwood G. Downs, J. Theodore Geissendoerfer, Richard Wischkaemper.

COURSES

No.	Tile	Rec. hrs.	Required of	Prerequisite courses
1a,b.	Beginning	6	Jr. E. M. (Geol.)	
3a,b.	Intermediate	6.	Jr. E. M. (Geol.)	1a,b.
5-6.	Prose and Poetry	6*	Elective	2 yrs. prep. German
II-12.	Rapid Reading	· 6*	Elective	3a or 3b
21-22.	Scientific Intermediate	6*	Elective	1-3 or equivalent
23-24.	Adv. Scientific Reading	6* .	Elective	5-6 or 4 yrs. prep. Ger.

* Both semesters must be completed before credit is given for either semester.

Ia,b. BEGINNING. Double course. Pronunciation, grammar, conversation, and composition; selected readings in easy prose and verse. KROESCH, MYERS.

- 3a,b. INTERMEDIATE. Double course. Selected texts in modern narrative and descriptive prose; selected lyrics and ballads; a drama of Lessing, Goethe, or Schiller. 'Assigned reading of texts outside of class. KROESCH, MYERS, FRARY.
- 5-6. PROSE AND POETRY. Geography, history, and legend. Review of German grammar throughout the year. BURKHARD, DOWNS.
- II-12. RAPID READING. First semester: narrative prose; Hauff, Storm, Sudermann, Goethe's Hermann und Dorothea. Second semester: Plays of Lessing, Goethe, Schiller, Hebbel. Assigned readings and reports. DAVIES.
- 21-22. SCIENTIFIC INTERMEDIATE. This course aims to give students a reading knowledge of German for use in scientific studies. Wait's German Science Reader (or equivalent). GEISSENDOERFER, GRAVES.
- 23-24. ADVANCED SCIENTIFIC READING. Reading of monographs and periodicals. Not open to those who have credit for Course 7-8. May be supplemented by Course 20-30. WISCHKAEMPER.

MECHANICAL ENGINEERING

Professor John J. Flather; Assistant Professor S. Carl Shipley; Instructors Edward Quigley, William H. Richards.

COURSES

No.	Title	Lab. hrs.	Required of -	Prereq. courses
1a. Pattern	n Making	. 6 (9 wks.)	1st-yr. E. M. & Met. E.	
rb. Found	ry	. 6 (9 wks.)	1st-yr. E. M. & Met. E.	
ic. Forge		. 6 (9 wks.)	1st-yr. E. M. & Met. E.	
Id. Machin	ne & Bench work.	. 6 (9 wks.)	1st-yr. E. M. & Met. E.	

- 1a. PATTERN MAKING. Use of tools, lathe and bench work, making of timber joints, core boxes, and flasks. RICHARDS.
- Ib. FOUNDRY. Molding, core making, mixing and casting metals. QUIG-LEY.
- IC. FORGE. Use of tools, forging, welding, tool dressing and tempering. QUIGLEY.
- Id. MACHINE AND BENCH WORK. Use of tools and elementary machine operations. Shipley.

METALLURGY

Professors William R. Appleby, Peter Christianson, Levi B. Pease; Assistant Professor Samuel L. Hoyt; Instructor Ervin W. Mc-Cullough.

34

METALLURGY

COURSES

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
2.	Assaying	. 4	8	All Fr.	Chem. 5, Min-
					eral, 23
3.	Gen. Met. & Iron & Stee	el 3		Soph. E. M. & Met. E.	2, Chem. 6
4.	Wrought Iron & Steel	• 3		Soph. E. M. & Met. E.	3
	Ore Dressing		• •	All Jr.	
	Ore Dressing			All Jr.	
6f.	Field Work in Metallurgy	7	10 dys	Jr. E. M. & Met. E.	Satisfactory
					completion
					of Jr. year
	Ore Testing		8	Sr. E. M. & Met. E.	106,5
8.	Special Problems in Or				
	Testing		4	Sr. E. M. & Met. E.	17
	Advanced Metallurgy		_ 8	Sr. Met. E.	7
	Thesis in Metallurgy		8	Sr. Met. E.	106,5
~	Ore Dressing Lab		4	Jr. Met. E.	Geol. 23 & 24
	Ore Dressing Lab.		4	Jr. Met. E.	5 & 1 3
	Thesis & Specifications.		18	Sr. Met. E.	II
	Met. of Base Metals		• •	Jr. E. M. & Met. E.	•4
	Met. of Precious Metals.			Jr. E. M. & Met. E.	105
	Electrometallurgy		••	Sr. Met. E.	2, 4, 105, 106
153.	Metallography	• 3	4.	Jr. Met. E.	Chem. 12, Phys. 1 & 2
	Metallography	2		Jr. Met. E.	Met. 153
	Metallog. for Engineers.		4	Elective	Mech. Eng. 3 & 4
	Adv. Met. for Engineers.			Elective	Met. 157
	Metallog. for Chemists	-	4	Elective	Chem. 12
	Dental Metallography		~	Elective	
	Advanced Metallog	-		Elective	 Met. 154
	Advanced Metallog			Elective	
rod.	and the second s				

- 2. ASSAVING. Determination of values of ores, metallurgical products, and bullion. APPLEBY and Assistants.
- 3. GENERAL METALLURGY AND METALLURGY OF IRON. Including the subjects of combustion, fuels, refractory materials and furnaces. Lectures and recitations on metallurgy of iron. CHRISTIANSON.
- 4. METALLURGY OF WROUGHT IRON AND STEEL. Puddling and hearth processes for the production of wrought iron. Cementation, crucible, Bessemer and open hearth processes for the production of steel. General principles and construction of furnaces. CHRISTIANSON.
- 5-6. ORE DRESSING. Examination of ores, crushing, sizing classification, and methods of mechanical separation. McCullough.
- 6f. FIELD WORK IN METALLURGY. Study of metallurgical operations at smelters and mills. Detailed report is required covering plants visited. CHRISTIANSON, PEASE.
- 7. ORE TESTING. Determinations of methods of ore treatment, stamping, concentration, cyanidation, roasting, amalgamation and flotation. CHRISTIANSON and Assistants.

- 8. SPECIAL PROBLEMS IN ORE TESTING. Continuation of Course 7. Assay of mill and smelter products so as to regulate smelting charges and roasting operations. PEASE and Assistants.
- ADVANCED METALLURGY. Pyrometry, calorimetry, metallurgical calculations to determine heat distribution and heat balance. CHRISTIAN-SON.
- II. SPECIAL PROBLEMS IN METALLURGY. Research work preparatory to thesis. Appleby and Assistants.
- 13-14. ORE DRESSING LABORATORY. Practical problems in crushing, sizing, classification and concentration of minerals. McCullough.
- 16. THESIS AND SPECIFICATIONS. Detailed investigations of ore treatment, with report including designs and specifications for suitable plants. APPLEBY and Assistants.
- 105. METALLURGY OF THE BASE METALS. Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining methods. PEASE.
- 106. METALLURGY OF THE PRECIOUS METALS. Gold, silver, and platinum. Methods and principles of cyanidation, chlorination, amalgamation, and lixiviation as applied to the treatment of the above. PEASE.
- 109. ELECTROMETALLURGY. Application of electricity to the production of heat for the smelting of ores and refining of metals. Comparative costs of the use of fuel and electricity for heating purposes, relative efficiencies of electric and fuel furnaces. Construction of high temperature furnaces and commercial plants. CHRISTIANSON.
- 153-154. METALLOGRAPHY. Theory of metallic alloys. Metallographic technique. Properties of metals and alloys. Metallography of iron and steel and commercial alloys. Technical metallography. Hoyt.
- 157. METALLOGRAPHY FOR ENGINEERING STUDENTS. Metallurgy of iron and steel. Microscopic and thermal analysis of steel and cast iron; heat and mechanical treatment. Laboratory work. Hoyt.
- 158. ADVANCED METALLOGRAPHY. Continuation of Met. 157. Metallography applied to engineering practice; commercial heat treatment; uses and properties of alloy steels. Engineering specifications involving the use of metals and alloys. Laboratory work. HOYT.
- 160. METALLOGRAPHY FOR CHEMICAL STUDENTS. The preparation of metallic alloys; their microscopical and thermal analysis. Steel and other commercial alloys with particular reference to chemical metallurgy. Corrosion of steel and non-ferrous alloys. Metallography applied to analytical chemistry. Hoyt.
- 161. DENTAL METALLOGRAPHY. Study of the dental alloys from the standpoint of metallography. Hoyt.

163-164. ADVANCED METALLOGRAPHY. Technical and scientific research. The study of steel rails, automobile and locomotive parts, tool steels etc. Special problems in metallography with outside reading. Seminar work on the recent advances in metallography. Hovr.

MINE PLANT AND MECHANICS

Professor Elting H. Comstock; Assistant Professor Edwin M. Lambert; Instructors Edward W. Davis, Charles H. Clevenger.

COURSES

		Lect. or	Lab.			
No	o. Title	rec. hrs.	hrs.	Required of	Prereq. c	ourses
π.	Computation & Mensuration.	. 3		All 1st-yr. students		
3.	Mine Accounting		6	All 1st-yr. students		
4.	Algebra	• 4	• •	All 1st-yr. students		
5-	Algebra & Trigonometry	. 6	· · _	All Fr.	I & 2	
6.	Spherical Trig. & Anal. Geom	. 6		All Fr.	5	
7.	Calculus	• 5		All Soph.	6	
8.	Calculus	• 3	• •	All Soph.	7	
9.	Mechanics	• 5	• •	All Jr.	8	
IO.	Mechanics	. б	• •	All Jr.	9	
II.	Mine Plant	. 5	• •	Jr. E. M. & Met. E.	8	
I2.	Mine Plant	. б	+ +,2	Jr. E. M.	II	
13.	Hydraulics & Water-Power.	. 5	• •	All Sr.	IO	
14.	Metallurgical Power Plant.	. 2		Jr. Met. E.	II	
15.	Engineering Construction	. I	4	-Sr. E. M. & Met. E.	IO	
16.	Mine Plant Design		IO	Sr. E. M.	15	
18.	Mill and Smelter Design	• • • ·	б	Sr. Met. E	15	

- I COMPUTATION AND MENSURATION. Demonstrations of most important theorems of solid geometry. Volumes, approximate volumes, prismoidal formula, etc. Approximate computation, graphs, and graphical computation, logarithms and logarithmic computation, areas and approximations of areas, use of slide rule. CLEVENGER.
- 3 ELEMENTARY MINE ACCOUNTING. Elementary accounting in general; applications to mine accounts; primary records, labor, supply, mine and mill products, and fund sheets; secondary records, invoice, labor and supply, mine and mill cost sheets, trial balance. LAMBERT.
- 4. ALGEBRA. Equations with one, two, or more unknown quantities, inequalities, involution and evolution, theory of exponents, surds, quadratic equations both numerical and literal, equations with one or more unknown quantities that can be solved by means of quadratic equations, progressions. CLEVENGER.
- 5 ALGEBRA AND TRIGONOMETRY. Functions and functional notation, factor and remainder theorems, factors and values of functions, determinants, development of functions, theory of equations, permutations and combinations; trigonometric ratios, right triangles, general definitions of trigonometric functions, analytic relations, addition formulas, trigonometric equations, and oblique triangles. CLEVENGER.

- 6. SPHERICAL TRIGONOMETRY AND ANALYTICAL GEOMETRY. General properties and solution of spherical triangles; systems of coördinates, lociequations and properties of the straight line, transformation of coordinates, equations and properties of conics, general equations of the second degree, higher plane curves, space coördinates, point, plane, straight line, quadric surfaces. CLEVENGER.
- CALCULUS. Nature of differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, expansion of functions, indeterminate forms, partial derivatives, change of variable. LAMBERT.
- 8. CALCULUS. Elementary integration, undetermined coefficients, rational fractions, rationalization, formulas of reduction, hyperbolic functions, some differential equations of mechanics. LAMBERT.
- MECHANICS. Composition and resolution of forces, laws of equilibrium, practical applications, rectilinear motion, circular motion, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy; elementary mechanics of materials. CLEVENGER.
- 10. MECHANICS. Mechanical and elastic properties of materials of construction; beams, shafts, columns, reinforced concrete, hollow cylinders and spheres, rollers, plates; theory of internal stress. CLEVENGER.
- 11-12. MINE PLANT. Discussion of the machinery and appurtenances employed in the equipment of mines. Air compression, mechanical features of hoisting, pumping, ventilation, underground transportation. Electricity applied to mining. COMSTOCK.
- 13. HYDRAULICS AND WATER-POWER. Laws of the equilibrium, pressure, and flow of liquids, estimation of power to be developed at a power site, dams and appendages, theory of water wheels and turbines, speed control, power-house equipment, transmission. Comstock.
- 14. METALLURGICAL PLANT. Power, air, and water supply for metallurgical plants. Comstock.
- 15. ENGINEERING CONSTRUCTION. Theory of structures, loading, analytic and graphic resolution of stresses in framed structures, stresses in mining structures, design of mining structures. LAMBERT.
- 16. MINE PLANT DESIGN. A study of power possibilities, costs, etc., and designs of a power plant, surface equipment, and structures for a mine. COMSTOCK.
- MILL AND SMELTER DESIGN. A study of the construction and mechanical equipment of mills and smelters in connection with thesis work. COMSTOCK.

MINING ENGINEERING

MINING ENGINEERING

Associate Professor John F. Murphy; Instructor Anders J. Carlson. COURSES

		•			
		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
Ι.	Mine Surveying	. 3		All Soph.	Math. 6
2.	Mine Surveying	. 3		All Soph.	I
2f.	Field Work		7 wks.	All Soph.	2
4.	Mine Mapping		6	All Jr.	2f
6.	Mining	. I		All Soph.	
9.	Mining	. 5		All Jr.	6
IO.	Mining	: 5		All Jr.	9
rof.	Practical Mining		2 wks.	All Jr.	Satisfactory com- pletion of Jr. yr.
II.	Mining	. 5		Sr. E. M. &	
				E. M. (Geol.)	10
٢2.	Mining	. 5		Sr. E. M. &	
				E. M. (Geol.)	II
I 3.	Thesis		2	Sr. E. M.	ıof
14.	Thesis		I 2	Sr. E. M.	13

- **I**, 2. MINE SURVEYING. Computation, platting, and problems with special reference to mine surveying. LAMBERT.
- 2f. FIELD WORK. Practice in general surveying during the month of May. Practice in underground surveying during the first two weeks of June. This work is given on the Iron Ranges. LAMBERT, CARLSON.
- 4. MINE MAPPING. Mine mapping in accordance with prevalent practice in the western mining districts. Ore and stripping estimates and mine maps based on Mesabi Range practice. MURPHY, CARLSON.
- 6 MINING. Introductory course in mining. MURPHY.
- 9. MINING. Occurrence of ore bodies, prospecting, churn and diamond drilling, drilling, blasting, excavation, tunneling and drifting. MURPHY.
- 10. MINING. Shaft sinking, underground mining methods, support of underground excavation. MURPHY.
- **10**f. PRACTICAL MINING. Study of mining operations. Mine plant and equipment and practical mining work; a mine to be selected by department during months of May, June, July, and August. MURPHY, COMSTOCK, and Assistants.
- **II.** MINING. Open pit mining, quarrying, coal mining, mining alluvial deposits. MURPHY.
- 12. MINING. Drainage, transportation, ventilation, mine sanitation and hygiene, mine examination, mine management, mining law, economics of mining. MURPHY.
- 13, 14. THESIS. Conference. Design and specifications of mining details required in thesis study. MURPHY and Assistants.

SCHOOL OF MINES

PHYSICS

Professors Henry A. Erikson, Anthony Zeleny; Instructor Ernest O. Dieterich.

COURSES

No.	Title	Lect. or rec. hrs.		Required of	Prereq. courses
1. General	Physics	• 3		All Soph.	Math. 6
2. General	Physics	• 3		All Soph.	I
3. General	Lab. Practice		2	All Soph.	With I
4. General	Lab. Practice		2	All Soph.	With 2

- I. GENERAL PHYSICS. Mechanics of solids and fluids, sound and heat. Treatment experimental rather than mathematical; the fundamental principles. ZELENY, DIETERICH.
- 2. GENERAL PHYSICS. Electricity, magnetism, and light. Treatment experimental; the fundamental principles, including those of radioactivity, ionization, X-radiation, and the electrical constitution of matter. ZELENY, DIETERICH.
- 3. GENERAL LABORATORY PRACTICE. Physical measurements in the mechanics of solids and fluids, and in heat and sound, giving the student a knowledge of experimental methods, and an intimate acquaintance with the fundamental facts of the subject. DIETERICH.
- 4. GENERAL LABORATORY PRACTICE. Physical measurements in electricity, magnetism, and light. DIETERICH.

ROMANCE LANGUAGES

Professor Everett Ward Olmsted; Assistant Professor Jules T. Frelin; Instructors Edward H. Sirich, Francis B. Barton, Harry E. Atwood.

COURSES.

No.	Tile	Rec. hrs.	Required of	Prereq. courses
τb.	Beginning French	6	Jr. E. M. (Geol.)	
3b.	Intermediate French	6	Jr. or Sr. E. M. (Geol.)	ıb
5.	Survey French Lit	3	Sr. E. M. (Geol.)	3b
6.	Survey French Lit	, 3	Sr. E. M. (Geol.)	5

- Ib. BEGINNING FRENCH. Stress on accurate pronunciation, reading, reading vocabulary, and the essentials of grammar. Daily oral and written exercises (dictation and reproduction in French). FRELIN, SIRICH, Atwood, BARTON.
- 3b. INTERMEDIATE. French grammar, composition, and reading; increased use of French in the classroom. Selections from modern prose and poetry. FRELIN, ATWOOD, SIRICH, BARTON.
- 5-6. GENERAL SURVEY OF FRENCH LITERATURE. Lectures, recitations, and assigned readings. Designed to cover the whole period in historical outline. Selections from representative authors. SIRICH, ATWOOD, BARTON.

STUDENTS

SENIORS-15

Anderson, Edwin H., Oakes, N. D. Cassilly, Thomas E., St. Paul Coryell, Lewis S., Osceola, Wis. Dennis, Richard C., Ashland, Wis. Dopp, Lawrence, Ashland, Wis. Elson, William H., St. Paul Ernster, Omer F., Brainerd Fearing, Edward J., Little Falls, Minn. Hubbard, William E., Duluth Kwong, Yih-Kum, Shanghai, China Levorsen, A. Irving, Fergus Falls Peterson, Paul A., St. Paul Sweetman, Edwin A., Aitkin Wallace, Carleton S., Minneapolis Woodruff, John J., Minneapolis

JUNIORS-20

Ainsworth, Robert E., Minneapolis Allard, Raymond W., St. Paul Armstrong, Harold K., Minneapolis Bailey, A. Kittredge, Minneapolis Clark, Fred E., Minneapolis Copeland, William A., St. Paul Cowin, Percy G., Minneapolis Dane, Carleton M., St. Paul Dowdell, Ralph L., St. Paul Foley, Lyndon L., Minneapolis

Abramson, Jake, Minneapolis Barr, Joseph C., Riverton Calhoun, Robert, Minneapolis Berg, Locksley D., Dickinson, N. D. Donaghue, Abner J., Minneapolis Flom, Frank, Minneapolis Frank, Elden J., Duluth Frellsen, Sidney A., Minneapolis Gandrud, Bennie W., Glenwood Goldberg, Bert, St. Paul

Andersen, A. Clarence, Tyler Arnold, Lewis E., Minneapolis Bergsten, Axel, Florence, Wis. Chadbourn, Charles H., Minneapolis Davies, Herman F., Minneapolis Donald, George A., Ashland, Wis. Johnsen, Trygve, St. Paul Johnston, Kenneth A., St. Paul Mark, Israel C., Minneapolis Mars, William P., Duluth

Carlson, Edwin N., Brainerd Nelson, Ewart G., Kennedy

Frank, Harry, Minneapolis Gannett, Roger W., Minneapolis Hsieh, Chung, Kirin, China Ingersoll, Guy E., Hibbing Jerrard, Walter L., St. Cloud McGilvra, Donald B., Minneapolis Moga, John A., St. Paul Nichols, Clifford R., Buhl Quinn, Howard E., Melrose Strand, Harry W., Marine Mills

SOPHOMORES-19

Goldberg, Samuel B., St. Paul Hosted, Joseph Orrin, Duluth Mellem, Walter R., St. Paul Miao, Yun Tai, Yunnanfu, China Rockwell, Seass A., Fargo, N. D. Sponberg, E. Clarence, Hibbing Stark, James A., Duluth Sullivan, Dan C., Stillwater Wadsworth, Lawrence Hill, Minneapolis

FRESHMEN-19

Munson, Arthur M., St. Paul Olsen, Paul W., Minneapolis Peterson, Clarence D. B., Minneapolis Powers, Sheldon M., Minneapolis Raiter, Clifford R., Minneapolis Ringwood, Thomas E., Ashland Rydlun, Edwyn G., Minneapolis Thoeni, Victor T., Wyckoff, Minn. Wheeler, James D., Minneapolis

FIRST YEAR-3

Plut, Frank J., Crosby

•

. .

.

1

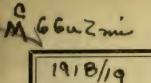
· · · ·

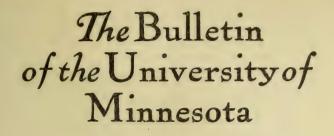
•

.

•

.


-


.

.

· · ·

The School of Mines Announcement for the Year 1918-1919 UNIVERSITY OF LLEGE

MAI.

Vol. XXI No. 13 June 22 1918

Entered at the post-office in Minneapolis as second-class matter Minneapolis, Minnesota

1918	19)19
JULY	JANUARY	JULY
	a Su Mo Tu W Th Fr Sa	Su Mo Tu W Th Fr Sa
14 15 16 17 18 19	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
AUGUST	FEBRUARY	AUGUST
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
SEPTEMBER	MARCH	SEPTEMBER
15 16 17 18 19 20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
OCTOBER	APRIL	OCTOBER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NOVEMBER	MAY	NOVEMBER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

. . . . M

UNIVERSITY CALENDAR

1918-1919

1918			
September	II	Wednesday	Registration closes except for new stu-
			dents
September 11-	-18	Week	Fees payable except for new students
September 17-		Week	Examination for removal of conditions
			and entrance examinations
September 23-	-24		Registration and payment of fees for
			new students
September	25	Wednesday	First semester begins
October	17	Thursday	Senate meeting, 4:00 p.m.
November	5	Tuesday	General Election Day; a holiday
November	27	Wednesday	Thanksgiving recess begins 9:00 p.m.
December	2^{\cdot}	Monday	Thanksgiving recess ends 8:00 a.m.
December	21	Saturday	Christmas vacation begins 12 m.
1919			
January	2	Thursday	Christmas vacation ends 8:00 a.m.
January	20	Monday	Second semester registration closes ex-
			cept for new students
January	27	Monday	Final examinations begin
January	27	Monday	Payment of second semester fees closes
			except for new students
January	31)		Registration and payment of fees for
February	- I S		new students
February	3	Monday	Second semester begins
5	12	Wednesday	Lincoln's Birthday; a holiday
February	20	Thursday	Senate meeting, 4:00 p.m.
February	22	Saturday	Washington's Birthday; a holiday
April	17	Thursday	Easter recess begins 9:00 p.m.
April	22	Tuesday	Easter recess ends 8:00 a.m.
April 22-	-28	Week	Condition examinations in certain col-
		-	leges
May	15	Thursday	Senate meeting, 4:00 p.m.
May	23	Friday	Final examinations begin 2:00 p.m.
May	30 .	Friday	Memorial Day; a holiday
May	31	Saturday	Second semester closes
June	I	Sunday	Baccalaureate service
June June	2	Monday	Senior Class Day exercises
June June	4	Wednesday	Alumni Day
June June	5 6	Thursday	Forty-seventh Annual Commencement
June	0 16	Friday Monday	Summer vacation begins Summer Session begins
June	10	Monday	Summer Session begins

The University year for 1919-20 will begin Tuesday, September 16. Classes will begin September 24.

Program	of Su	pplementary	Examinations

Tuesday,	Sept. 17	9 - 12 a.m.	Mechanics and Mathematics
		2-5 p.m.	Mining Engineering Subjects
Wednesday,	Sept. 18	9 - 12 a.m.	Chemistry
		2-5 p.m.	Drawing and Descriptive Geometry
		2-5 p.m.	Mechanical Engineering Subjects
Thursday,	Sept. 19	9-12 a.m.	Metallurgical Subjects
		2-5 p.m.	Physics
Friday,	Sept. 20	9-12 a.m.	Electrical Engineering Subjects
		2-5 p.m.	Geology and Mineralogy

THE SCHOOL OF MINES

FACULTY

MARION LEROY BURTON, Ph.D., D.D., LL.D., President 1005 S. E. 5th St. CYRUS NORTHROP, LL.D., President Emeritus 519 10th Ave. S. E. WILLIAM R. APPLEBY, M.A., Dean, and Professor of Metallurgy 928 S. E. 5th St. JOHN R. ALLEN, M.E., Professor of Mechanical Engineering 2421 Girard Aye, S. THOMAS M. BAINS, JR., E.M., Assistant Professor of Mining 1883 Iglehart Ave., St. Paul WILLIAM E. BROOKE, B.C.E., M.A., Professor of Mathematics and Mechanics 416 S. E. Walnut St. OSCAR C. BURKHARD, Ph.D., Assistant Professor of German 719 E. River Road PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy 217 S. E. Union St. ELTING H. COMSTOCK, M.S., Professor of Mine Plant and Mechanics 1310 S. E. 7th St. JAMES DAVIES, Ph.D., Assistant Professor of German 3230 3rd Ave. S. WILLIAM H. EMMONS, Ph.D., Professor of Geology and Mineralogy 1223 S. E. 7th St. HENRY A. ERIKSON, Ph.D., Professor of Physics 424 S. E. Harvard St. JOHN J. FLATHER, Ph.B., M.M.E., Professor of Mechanical Engineering 315 11th Ave. S. E. *GEORGE B. FRANKFORTER, Ph.D., Professor of Chemistry 525 E. River Road JULES T. FRELIN, B.A., Assistant Professor of Romance Languages 310 12th Ave. S. E. ROBERT W. FRENCH, B.S., Assistant Professor of Drawing 1018 16th Ave. S. E. FRANK F. GROUT, M.S., Associate Professor of Geology and Mineralogy 504 University Ave. S. E. SAMUEL L. HOYT, E.M., Ph.D., Assistant Professor of Metallography 416 8th Ave. S. E. A. WALFRED JOHNSTON, M.A., Assistant Professor of Geology 803 University Ave. S. E. WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive Geometry 722 10th Ave. S. E. ALFRED E. KOENIG, M.A., Dr. Theol., Assistant Professor of German 602 S. E. 7th St. SAMUEL KROESCH, Ph.D., Assistant Professor of German 611 S. E. Oak St. EDWIN M. LAMBERT, M.E., Assistant Professor of Mine Plant and Mechanics 1086 12th Ave. S. E. * On leave of absence, 1918-19.

IRVILLE C. LECOMPTE, Ph.D., Professor of Romance Languages 827 University Ave. S. E. FRANKLIN R. MCMILLAN, C.E., Assistant Professor of Structural Engineering 524 8th Ave. S. E. ADOLPH F. MEYER, C.E., Associate Professor of Hydraulic Engineering 1467 Ashland Ave., St. Paul JOHN F. MURPHY, Associate Professor of Mining 514 7th Ave. S. E. WALTER R. MYERS, Ph.D., Assistant Professor of German 608 S. E. Oak St. EVERETT W. OLMSTED, Ph.D., Professor of Romance Languages 2727 Lake of the Isles Blvd. LEVI B. PEASE, M.S., Professor of Metallurgy 1070 16th Ave. S. E. RUTH SHEPARD PHELPS, M.S., Assistant Professor of Romance Languages East Sanford Hall TERENCE T. QUIRKE, E.M., Ph.D., Assistant Professor of Geology 315 11th Ave. S. E. FRANK B. ROWLEY, M.E., Assistant Professor of Experimental Engineering 217 S. E. Beacon St. WILLIAM T. RYAN, E.E., Assistant Professor of Electrical Engineering 1827 Melbourne Ave. S. E. CARL SCHLENKER, B.A., Professor of Romance Languages 514 11th Ave. S. E. COLBERT SEARLES, Ph.D., Professor of Romance Languages 1941 Fremont Ave. S. GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Professor of Electrical Engineering 717 E. River Road *S. CARL SHIPLEY, B.S., M.E., Assistant Professor of Mechanical Engi-1517 E. River Road neering CHARLES F. SHOOP, B.S., Assistant Professor of Experimental Engineering 811 S. E. Fulton St. CHARLES F. SIDENER, B.S., Professor of Chemistry 1320 S. E. 5th St. CLINTON R. STAUFFER, Ph.D., Professor of Geology 1120 S. E. 5th St. ANTHONY ZELENY, Ph.D., Professor of Physics 613 East River Road THOMAS M. BRODERICK, Ph.D., Instructor in Geology 512 S. E. Delaware St. FRANCIS B. BARTON, Ph.D., Assistant Professor of Romance Languages 507 S. E. Oak St. WILLIAM E. BRYANT, Instructor in Foundry Practice 1108 S. E. 4th St. ANDERS J. CARLSON, C.E., Instructor in Mine Plant and Mechanics 520 S. E. Delaware St. *Edward W. Davis, B.S., Instructor in Mine Plant and Mechanics 979 14th Ave. S. E. SOLOMON M. DELSON, Ph.B., Instructor in Romance Languages 517 9th Ave. S. E. ELISE F. DEXTER, M.A., Instructor in German 314 10th Ave. S. E. 410 University Ave. S. E FRANCIS B. FOLEY, Assistant in Metallography

6 .

^{*} On leave of absence, 1918-19.

FACULTY

ISAAC W. GEIGER, Ph.D., Instructor in Chemistry 15 Barton Ave. S. E.
ARTHUR R. GRAVES, Ph.D., Instructor in German 407 S. E. 4th St.
FRANCIS A. HOBART, Instructor in Machine Shop Practice
512 S. E. Delaware St.
INGVALD KVITRUD, C.E., Instructor in Drawing 2001 S. 7th St.
MRS. BARBARA L. LUND, Ph.B., Assistant in Chemistry 600 S. E. Essex St.
LOUALLEN F. MILLER, B.S., M.A., Instructor in Physics
1112 S. E. 7th St.
Amos F. Moyer, M.E., Instructor in Experimental Engineering
1624 LaFond St., St. Paul
*Howard D. Meyers, B.S. in C.E., Instructor in Drawing
516 S. E. Oak St.
EDWARD P. QUIGLEY, Instructor in Forge Work 2923 Chicago Ave.
WILLIAM H. RICHARDS, Instructor in Carpentry 1423 W. 27th St.
ELWYN L. SMITH, B.S., Instructor in Metallurgy
1883 Iglehart Ave., St. Paul
WOLDEMAR M. STERNBERG, B.S., in Chem. Eng., Instructor in Chemistry
510 S. E. Ontario St.
GUSTAVE L. VAN ROOSBROECK, M.A., Instructor in Romance Languages
404 ¹ / ₂ 14th Ave. S. E.
H. LEE WARD, Ph.D., Instructor in Chemistry 2176 Scudder St., St. Paul
EDWIN H. ZEYDEL, M.A., Instructor in German 1312 S. E. 7th St.
ELIZABETH B. HENDERSON, Librarian 2618 Aldrich Ave. S.

.

* On leave of absence, 1918-19.

GENERAL INFORMATION

The School of Mines was established by the Board of Regents in 1888, upon recommendation of the General Faculty of the University. The buildings and laboratories of the School are located on the main campus of the University. The mining districts of Minnesota are within a few hours, by rail, from Minneapolis. The heartiest coöperation exists between the various mine managements and the School, so that the mining properties are at all times open to parties from the school for observation and study trips. Practical surveying, geological field work, and underground work are carried on in one or more of the districts. Students in the School of Mines have, therefore, all the advantages afforded by a large university combined with ample opportunity for field observation and experience.

The School of Mines occupies the new building provided by the Legislature of 1913. In the basement are the assay and electro-metallurgical laboratories, together with machinery room, instrument room, balance room, furnace rooms, and necessary storerooms. On the first floor are the administrative offices, offices, and lecture rooms of the departments of Metallurgy and Mine Plant and Mechanics. On the second floor are the offices, lecture rooms, and drafting rooms of the department of Mining, the ore dressing laboratory, and the library of the School. On the third floor are the offices, laboratories, and lecture rooms of the department of Metallography, junior drafting room, photographic dark rooms, blue printing room, and offices and computing rooms for the branch of the Experiment Station serving the Tax Commission.

DEGREES

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of Engineer of Mines (E.M.), Engineer of Mines in Geology [E.M. (Geology)], and Metallurgical Engineer (Met.E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four or five years, and vice versa, provided such candidate completes an additional year's work at the School and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and Architecture, and in the School of Analytical and Applied Chemistry, who contemplate taking a degree in this School after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thoro courses in mechanics, mathematics, surveying, physics, chemistry, and the necessary theory and practice of structural, mechanical, and electrical engineering.

(a) Geology—to determine the location of the ore. (b) Mineralogy—to determine its nature. (c) Assaying—to determine if it has value for treatment. (d) Mining Engineering—to furnish material for treatment. (e) Ore Testing—to determine best methods of treatment. (f) Ore Dressing—furnishing products for metallurgical treatment. (g) Metallurgy—smelting and refining ores and ore dressing products; reduction to metals.

EXPERIMENT STATION

The School of Mines Experiment Station has been recently established to promote the development of the mining and mineral resources of the state, to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates for the Tax Commission and to do such other work along the lines above outlined as may be requested by other state departments. Coöperation has been effected with the U. S. Bureau of Mines, the U. S. Geological Survey, the Minnesota Geological Survey, and the School of Chemistry.

The Experiment Station is prepared to assist citizens interested in these lines of work; to assay specimens of ore, rocks, clays, and minerals, found within the state, free of charge.

In submitting samples the sender must state the exact location where each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the office of the Station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, The University of Minnesota, Minneapolis, Minnesota.

LIBRARY

The library occupies a well-lighted room, 55 feet by 61 feet, on the second floor of the School of Mines building. The books have been carefully selected and form a working collection of great value, not only to the faculty and students, but also the mining men of the state. Only books relating to mining, metallurgy, metallography, geology, and allied subjects are shelved in this library, the general University library as well as the public libraries of Minneapolis and St. Paul serving as reserve collections. The library is especially rich in complete sets of periodicals, transactions, and the reports of state and foreign mining departments. Foreign technical literature is well represented. A card index is kept of all articles of value and interest appearing in the leading periodicals.

ADMISSION

The courses leading to the degrees of Engineer of Mines, Engineer of Mines (in Geology), and Metallurgical Engineer may be completed in either four or five years. Students may enter the School of Mines without preparation in Higher Algebra and Solid Geometry. Such students must enter the five-year courses. It is recommended that students who come poorly prepared in Mathematics enter the five-year courses.

Students may be admitted to the School of Mines either by certificate or examination, or both.

ADMISSION BY EXAMINATION

Entrance examinations are offered at the University during registration week, September 17 to 20. Candidates entering by this method must pass examination in fifteen units so chosen as to satisfy the requirements outlined below. Certificates from the College Entrance Examination Board and from the High School Board are accepted in lieu of examinations in the subjects they represent. Those desiring to take examinations should notify the Registrar of the University in writing not later than August 15.

ADMISSION BY CERTIFICATE

Graduates of the following courses, provided their preparation satisfies the requirements outlined below, may be admitted.

I. Any four-year course of a Minnesota state high school or other accredited school in the state.

2. A four-year course of schools in any other state accredited to the state university of that state.

3. The Advanced Latin and Advanced English courses of the Minnesota state normal schools.

The applicant for admission should request the principal or superintendent to forward to the Registrar of the University a complete transcript of his high-school or preparatory-school record showing the number of weeks and hours per week spent upon each study, with the grades

GENERAL INFORMATION

entered as *passed*, *passed* with credit, or *passed* with honor. Credential blanks prepared by the University must be used; these blanks may be secured upon application to the Registrar. Upon receipt of the credentials at the University the Registrar will notify the applicant with regard to his admission.

ENTRANCE REQUIREMENTS

FIVE-YEAR COURSES

English, three units; Elementary Algebra and Plane Geometry, one unit each; ten additional units, of which not more than four may be in Group F.

FOUR-YEAR COURSES

Same as five-year courses with the addition of one-half unit each of Higher Algebra and Solid Geometry. It is recommended that students who enter these courses review Higher Algebra and Solid Geometry. Those unable to carry freshman mathematics satisfactorily will be required to re-register in the five-year course.

LIST OF ENTRANCE SUBJECTS

The term *unit* means not less than five recitations of forty minutes each per week for a period of thirty-six weeks. In manual subjects and kindred courses, it means the equivalent of ten recitation periods per week for thirty-six weeks.

GROUP A. ENGLISH. Four units.

GROUP B. LANGUAGES. Latin, Greek, German, French, Spanish, Scandinavian, one to four units each.

GROUP C. HISTORY AND SOCIAL SCIENCES. Ancient and Modern History, one unit each; English and Senior American History, one-half unit each; American Government, Economics, Economic History of England, and Economic History of the United States, one-half unit each; Commercial Geography, and History of Commerce, one-half or one unit each.

GROUP D. MATHEMATICS. Elementary Algebra and Plane Geometry, one unit each; Higher Algebra, Solid Geometry, and Trigonometry, one-half unit each.

GROUP E. NATURAL SCIENCES. Physics and Chemistry, one unit each; Botany and Zoology, one-half or one unit each; Physiology, Astronomy, Geology, and Physiography, one-half unit each.

GROUP F. VOCATIONAL SUBJECTS. Business Law and Business Arithmetic, one-half unit each; Elementary and Advanced Bookkeeping, one unit each; Stenography and Typewriting, one or two units. Freehand Drawing, Mechanical Drawing, and Shop Work, one or two units each. Agriculture, one to four units. Normal Training subjects, one to three units, provided the applicant has had one year of subsequent teaching experience.

DESCRIPTION OF SUBJECTS ACCEPTED FOR ADMISSION

A description of the subjects accepted for admission to the University will be found in the Bulletin of General Information, which will be sent to any address upon application to the Registrar, The University of Minnesota, Minneapolis.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

ADMISSION TO ADVANCED STANDING

This University accepts records from all reputable colleges and universities for credit to advanced standing. Such records are accepted as far as they are equivalent to the work done in this institution. In bringing records from other institutions, the certificate must be upon the official blank of the institution granting the certificate and should show:

- (a) The subject studied; if a language, the books read, etc.
- (b) The number of weeks and hours per week spent upon each subject.
- (c) Ground covered in laboratory work, in case of laboratory subjects.
- (d) The result. The exact grades should be stated, accompanied by an explanation of the marking system employed.

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrollment Committee of the School of Mines.

EXPENSES

One half of the Annual Incidental Fee of \$55, which includes all laboratory charges, is payable at the opening of each semester. Cards entitling the student to admission to classes will not be issued until the fees have been paid. Books and supplies for each year of the course cost approximately \$25. Field-work expense during the sophomore year is estimated at \$150 and for the junior year at \$225.

DEPOSIT FEE

At the beginning of each year, in addition to the first semester incidental fee, a deposit fee of five dollars is required of every student to cover the following items:

Change of registration......\$2.50 Examination for removal of condition at set time....\$1.00 per subject Rental of post-office box, University post-office (required

Penalties for late registration or late payment of fees.

A penalty fee of one dollar (\$1) must be paid by all students who register or pay fees after the prescribed time. (See calendar, page 3.) After the day previous to that on which classes begin, the penalty for delay increases at the rate of twenty-five cents a day.

The unused balance of the deposit fee will be returned at the end of each year. If, at any time during the college year, the amount of charges against a student exceed the amount of the deposit, a second fee of five dollars (\$5) will be required.

SPECIAL FEES

The following special items may be included in the expenses of a student:

Minnesota Union membership, required\$1 a semester
Special examination for removal of condition, at other than the
set time\$5.00
Examination on subject taken out of class 5.00
No fee for such examinations on first entering the Univer-
sity, if taken within the first six weeks.
Military uniform, required of all freshmen and first-year stu-
dents
Gymnasium suit 5.00
Health fee (per semester) 3.00

THE ELLIOT SCHOLARSHIP LOAN FUND

To fulfill the wish of the late Dr. A. F. Elliot to aid young men who find their efforts to obtain a practical education embarrassed through lack of means, the sum of \$5,000 was placed in the hands of the Board of Regents as a scholarship fund. The income from this fund is loaned to students in the School of Mines on the following conditions: the financial needs of the applicant, his scholarship, moral character, enthusiasm shown in his work, and promise of usefulness in his profession. When money is available, it may be loaned to pay the expenses of worthy students during sickness. The loans are to be repaid, without interest, at the earliest convenience of the recipients.

GRADUATION

Students completing courses of study to the satisfaction of the faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examinations in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least one full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examinations held at the end of the second semester. Irregular attendance will debar a student from entering all final examinations.

THESIS

The thesis work is intended to bring in review and connect the work in Mining and Metallurgy, Geology and Mineralogy, Mechanical and Electrical Engineering, Mathematics and Mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology, for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem, for candidates for the degree of Metallurgical Engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

Prior to the reopening of Field Work at the School of Mines, Tuesday, September 17, 1918, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on the project must be under way by December I. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the School.

SPECIAL NOTES

Students failing to receive a semester mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year. Each student must obtain from the Registrar his average in all subjects and present himself for supplementary examinations, according to the program given on page 4.

Failure of the Registrar to notify a student of deficiencies will not be accepted as a reason for neglecting to report for necessary supplementary examinations. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

Students failing to receive a semester mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination at the end of the first or second semester will be given zero on the examinations.

Students whose absences in either semester exceed four weeks in the aggregate are not permitted to take examinations without special permission of the faculty.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

During the academic year students will be held responsible for the receipt of official communications sent to them through the University post-office. During the summer vacation they will be held responsible for the receipt of such communications sent to the home address given on registration blank for the preceding academic year, unless formal notification of their correct address is filed with the Registrar and the Dean.

COURSES OF STUDY

UNIFORM CURRICULUM TO END OF SOPHOMORE YEAR

The courses leading to the degrees of Engineer of Mines, Engineer of Mines in Geology, and Metallurgical Engineer, are uniform for the first three years of the five-year courses and for the first two years of the four-year courses.

FIVE-YEAR COURSES

FIRST YEAR

First Semester

Chemistry 5*, General and Analytical, 5† Mathematics I, Algebra, 4 Mining 3, Mine Accounting, 6 Mechanical Engineering I, Shop Work, 6 Mineralogy 23, Elements of Mineralogy, 8 Military Drill

Second Semester

Chemistry 6, General and Analytical 7, Chem. 5 Mathematics 2, Computation and Mensuration, 3 Mechanical Engineering 1, Shop Work, 6 Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23 Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23 Military Drill

FRESHMAN YEAR

First Semester

Chemistry 11, Quantitative Analysis, 7, Chem. 5, 6 Drawing 11, Engineering Drawing, 10 Geology 105, Elements of Rock Study, 4, Mineral. 24 Mathematics 5, Algebra and Trigonometry, 6, Math. 1, 2 Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2 Military Drill

Second Semester

Chemistry 12, Quantitative Analysis, 7, Chem. 11 Drawing 12, Engineering Drawing, 8, Draw. 11

^{*} Odd numbers indicate first-semester courses; even numbers, second-semester courses. A combination of the two (e.g., 5-6) indicates courses continuing through the year. In the case of courses repeated the second semester, the suffix a indicates first semester; the suffix b, second semester.

[†] Figure following the descriptive name of a course indicates number of hours a week. Course names following indicate prerequisite courses.

COURSES OF STUDY

Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5 Geology 1b. General Geology, 3, Mineral, 24 Geology 106, Petrology, 4, Geol. 105 Metallurgy 4, Wrought Iron and Steel, 3, Met. 3 Military Drill

SOPHOMORE YEAR

First Semester

Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6 Mathematics 7, Calculus, 5, Math. 6 Geology 73. Historical and Economic Geology, 3. Geol. 106 Metallurgy 105, Base Metals, 4, Met. 4 Mining I, Mine Surveying, 3, Math. 6 Physics 1, General, 3, Math. 6 Physics 3, General Laboratory Practice, 2, with Physics 1 Second Semester

Drawing 14, Drafting, 4, Draw. 13

Mathematics 8, Calculus, 3, Math. 7

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 2, Mine Surveying, 3, Min. 1

Mining 6, 1

Physics 2, General, 3, Physics I

Physics 4, General Laboratory Practice, 2, with Physics 2

Field Work. Months of May, June, July, and August Mining 2f, Surveying, Min. 2, beginning about May I Geology If, Geol. 1b, 105, beginning about June 15 Underground Mining Work, beginning about July I

FOUR-YEAR COURSES

FRESHMAN YEAR

First Semester

Chemistry 5, General and Analytical, 5 Drawing 11, Engineering Drawing, 10 Mathematics 5. Algebra and Trigonometry, 6 Mineralogy 23, Elements of Mineralogy, 8 Military Drill

Second Semester

Chemistry 6, General and Analytical, 7, Chem. 5 Drawing 12, Engineering Drawing, 8, Draw. 11 Mathematics 6, Trigonometry and Analytical Geometry, 6, Math. 5 Metallurgy 2, Assaying, 12, Chem. 5, Mineral. 23 Mineralogy 24, Descriptive Mineralogy, 4, Mineral. 23 Military Drill

SCHOOL OF MINES

SOPHOMORE YEAR

First Semester

Chemistry 11, Quantitative Analysis, 7, Chem. 5, 6 Drawing 13, Descriptive Geometry, 2, Draw. 12, Math. 6

Geology 105, Elements of Rock Study, 4, Mineral. 24

Mathematics 7, Calculus, 5, Math. 6

Metallurgy 3, General and Iron, 3, Chem. 6, Met. 2

Mining I, Mine Surveying, 3, Math. 6

Physics 1, General, 3, Math. 6

Physics 3, General Laboratory Practice, 2, with Physics 1 Military Drill

Second Semester

Chemistry 12, Quantitative Analysis, 7, Chem. 11

Drawing 14, Drafting, 4, Draw. 13

Geology 1b, General Geology, 3, Mineral. 24

Geology 106, Petrology, 4, Geol. 105

Mathematics 8, Calculus, 3, Math. 7

Metallurgy 4, Wrought Iron and Steel, 3, Met. 3

Mining 2, Mine Surveying, 3, Min. I

Mining 6, 1

Physics 2, General, 3, Physics 1

Physics 4, General Laboratory Practice, 2, with Physics 2 Military Drill

Field Work. Months of May, June, July, and August Mining 2f, Surveying, Min. 2, beginning about May I Geology If, Geol. 1b, 105, beginning about June 15 Underground Mining Work, beginning about July I

COURSES IN MINING ENGINEERING

COURSES LEADING TO THE DEGREE OF E.M.

FIVE-YEAR COURSES

JUNIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12

Experimental Engineering 102a, Elementary Laboratory, 4, with Mech. 11 Geology 111, Ore Deposits, 4, Geol. 106

Mechanics 9, 5, Math. 8

Mechanics 11, Mine Plant, 5, Math. 8

Metallurgy 5, Ore Dressing, 4

Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 101b, Materials Testing Laboratory, 4, with Mech. 10

Geology 112, Problems in Ore Deposits, 4, Geol. 111

Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Metallurgy 6, Ore Dressing 4, Met. 5

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1 Mining 10f, beginning about May 15 Underground Mining Work, beginning about July 1

SENIOR YEAR

First Semester

Electrical Engineering 53, Electric Power, 5, Physics, 3, 4 Mechanics 13, Water Power, 5, Mech. 10 Mechanics 15, Engineering Construction, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8 Mining 11, 5, Min. 10 Mining 13, Thesis, 2, Min. 10f

Second Semester

Experimental Engineering 108, Experimental Laboratory, 4, Exp. Eng. 101b Mechanics 16, Mine Plant Design, 10, Mech. 15 Metallurgy 8, Special Problems, 4, Met. 7 Mining 12, 5, Min. 11 Mining 14, Thesis, 12, Min. 13

SCHOOL OF MINES

FOUR-YEAR COURSES

JUNIOR YEAR

First Semester

Experimental Engineering 102a, Elementary Laboratory, 4, with Mech. 11 Geology 73, Historical and Economic Geology, 3, Geol. 106, 1b Mechanics 9, 5, Math. 8

Mechanics 11, Mine Plant, 5, Math. 8

Metallurgy 105, Base Metals, 4, Met. 4

Metallurgy 5, Ore Dressing, 4

Mining 9, 5, Min. 6

Second Semester

Experimental Engineering 101b, Materials Testing Laboratory, 4, with Mech. 10

Mechanics 10, 6, Mech. 9

Mechanics 12, Mine Plant, 6, Mech. 11

Metallurgy 6, Ore Dressing 4, Met. 5

Metallurgy 106, Precious Metals, 4, Met. 105

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August

Metallurgy 6f, beginning about May 1

Mining 10f, beginning about May 15

Underground Mining Work, beginning about July I

SENIOR YEAR

First Semester

Chemistry 25, Ore and Slag Analysis, 7, Chem. 12

Electrical Engineering 53, Electric Power, 5, Physics 3, 4

Geology 111, Ore Deposits, 4, Geol. 106

Mechanics 13, Water Power, 5, Mech. 10

Mechanics 15, Engineering Construction, 5, Mech. 10

Metallurgy 7, Ore Testing, 10, Met. 106, Min. 8

Mining 11, 5, Min. 10

Mining 13, Thesis, 2, Min. 10f

Second Semester

Experimental Engineering 108, Experimental Laboratory, 4, Exp. Eng. 101b Geology 112, Problems in Ore Deposits, 4, Geol. 111 Metallurgy 8, Special Problems, 4, Met. 7 Mechanics 16, Mine Plant Design, 10, Mech. 15 Mining 12, 5, Min. 11 Mining 14, Thesis, 12, Min. 13

DEPARTMENT OF MINING ENGINEERING

The department is well supplied with samples of the smaller mine equipment, models, drawings, photographs, lantern slides, and mine maps. The lectures treat of prospecting, development, support of excavations, mining methods, mine administration, mining law, and the necessary allied subjects. The courses in Mining Engineering extend through the sophomore, junior, and senior years.

MINE SURVEYING

The work in surveying is given in the sophomore year and is designed solely for mining engineers. The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabi or Vermilion Range. The exact location will be announced in March of each year.

The students will be divided into squads of two to four. Each squad must provide itself with a 6-foot steel tape graduated to hundredths. The duration of the course will be seven weeks. Each student will be required to complete satisfactorily the following exercises and surveys:

- I. Chaining and taping
- 2. Compass work
- 3. Adjustment and use of wye and dumpy levels
- 4. Adjustment of mining transit
- 5. Reading angles
- 6. Traverse with transit and steel tape
- 7. Azimuth traverse with stadia
- 8. Determination of meridian, latitude, and time by solar and stellar observations
- 9. Survey of mining claim according to the regulations of the U. S. Government
- 10. Measurement of earthwork
- II. Laying out railroad tangents, curves, and crossings
- 12. Exercises in plane table work and geological surveying
- 13. The survey of a mine

A full equipment of surveying instruments of the latest and best makes is furnished to each squad for this work.

This is followed by a course in Mine Mapping during the second semester of the junior year.

Students who furnish satisfactory evidence of proficiency in this work may be given credit therefor. The department, however, reserves the right in any case to require such students to take a theoretical or a practical examination or both.

FIELD WORK IN MINING

Sophomore Year

After the close of the field work in Geology (last two weeks in June), members of the sophomore class are required to engage for six weeks in underground mining work on the Minnesota or Michigan iron ranges, for which they may receive wages.

Junior Year

Upon termination of the junior field work in Metallurgy (about May 15), the members of the junior class, who are candidates for the degree of Engineer of Mines, are required to devote two weeks to the study of mine plant and mine operation under the direction of the department. This work will be given in one of the leading western metal mining districts, exact location to be announced in April of each year. Thereafter, during the months of June, July, and August, the student is required to spend at least six weeks in actual underground mining work in the West, for which he may receive wages. The department will render all possible assistance in locating students in districts of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must in person submit this diary to the department on the date of the reopening of field work. In judging the character of the student's field work, equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 17, 1918. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering Field Work in Mining and Metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned: Metallurgy, September 17 to 24, inclusive; Mining and Mine Plant, September 25 to October 1.

On October I all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October I. These reports shall become the property of the School.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reasons, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

COURSES OF STUDY

COURSES LEADING TO THE DEGREE OF E.M. (GEOLOGY)

JUNIOR YEAR

First Semester

Geology 73, Historical and Economic Geology 3, 106, 1b Geology 151, Advanced General Geology, 3, 73 Geology 131, Advanced Petrology 5, 106, 1b German 1 or 21, 6 or French 1 or 3, 3 Metallurgy 155, Metallography 4 Mining 9, 5, Min. 6 Elective 6

Second Semester

Geology 124, Structural and Metamorphic Geology 3, 73 Geology 132, Advanced Petrology 5, 131 Geology 144, Construction and Interpretation of Geologic Maps 3, 111 Geology 150, Field Geology 8, 124 Geology 152, Advanced General Geology 3, 151 German 3 or 22, 6, German 1 or 21 or French 1 or 3, 6 Metallurgy 156, Metallography 4, 155 Mining 10, 5, Min. 9

Mining 4, Mine Mapping 6, Min. 2f

SENIOR YEAR

First Semester

Geology 111, Ore Deposits 4, 73 Geology 11, Paleontology 3, 1b Mining 11, 5, Min. 10 Thesis 2 Elective 12

Second Semester

Geology 112, Problems in Ore Deposits 4, 111 Geology 12, Paleontology 3, 11 Mining 12, 5, Min. 11 Thesis 4 Elective 9

FIELD WORK IN GEOLOGY

At the end of the sophomore year mining students are required to devote about three weeks to geologic mapping. This course usually comes after a seven weeks' course in surveying and the fields chosen are the Vermilion and Mesabi iron ranges of Minnesota. This work is intended to train the students in the interpretation of field relations and the preparation of geologic maps and cross sections.

The second field course in geology is required only of those students who are candidates for the E.M. in Geology degree. The course begins early in May and is completed in June. The course requires altogether about six weeks' work, and the field chosen is the Black Hills region of South Dakota or some other western region. The student is trained in the interpretation of field data; in detailed mapping, underground and on the surface; in the preparation of geologic cross sections through mines; and he may gather material which will serve as a basis for future study in advanced courses the following year. The work conforms with the standards of official surveys as nearly as practicable. At the close of the field season the students are expected to obtain positions with mining companies either as miners or as engineers, or if openings are available, they may enter geological surveys for the season's work.

COURSES IN METALLURGY

COURSES LEADING TO THE DEGREE OF MET.E.

FIVE-YEAR COURSES

JUNIOR YEAR

First Semester

Geology 111, Ore Deposits, 4, Geol. 106

Mechanics 9, 5, Math. 8

Mechanics 11, Mine Plant, 5, Math. 8

Metallurgy 5, Ore Dressing, 4, Geol. 23 and 24

Metallurgy 13, Ore Dressing Lab. 4, Geol. 23 and 24

Metallurgy 153, Metallography 7, Chem. 12, Physics 1 and 2

Mining 9, 5, Min. 6

Second Semester

Geology 112, Problems in Ore Deposits, 4, Geol. 111
Mechanics 10, 6, Mech. 9
Mechanics 14, Met. Plant, 2, Mech. 11
Metallurgy 6, Ore Dressing, 4, Met. 5 and 13
Metallurgy 14, Ore Dressing, Lab. 4, Met. 5 and 13
Mining 10, 5, Min. 9
Mining 4, Mine Mapping, 6, Min. 2f
Field Work. Months of May, June, July, and August Metallurgy 6f, beginning about May 1
Mining 10, beginning about May 15
Practical work in mills and smelters beginning about June 1

SENIOR YEAR

First Semester

Electrical Engineering, 53, Electric Power, 5, Physics, 3, 4 Mechanics 13, Water Power, 5, Mech. 10 Metallurgy 7, Ore Testing, 10, Met. 5, 6, 106 Metallurgy 11, Thesis, 8, Met. 106, Met. 5, 6, and 13 Metallurgy 109, Electrometallurgy, 8, Met. 3, 4, 105, and 106

Second Semester

Metallurgy 8, Special Problems, 8, Met. 7 Metallurgy 10, Advanced Metallurgy 10, Met. 7 Metallurgy 16, Thesis, 18, Met. 11

FOUR-YEAR COURSES

JUNIOR YEAR

First Semester

- Geology 73, Historical and Economic Geology, 3, Geol. 106, 1b Mechanics 9, 5, Math. 8
- Mechanics 9, 5, Math. 8
- Mechanics 11, Mine Plant, 5, Math. 8

Metallurgy 105, Base Metals, 5, Met. 4

Metallurgy 5, Ore Dressing, 4, Geol. 23 and 24

Metallurgy 13, Ore Dressing Lab. 4, Geol. 23 and 24

Metallurgy 153, Metallography 7, Chem. 12, Physics 1 and 2 Mining 9, 5, Min. 6

Second Semester

Mechanics 10, 6, Mech. 9

Mechanics 14, Met. Plant, 2, Mech. 11

Metallurgy 6, Ore Dressing, 4, Met. 5 and 13

Metallurgy 14, Ore Dressing, Lab. 4, Met. 5 and 13

Metallurgy 106, Precious Metals, 5, Met. 105

Metallurgy 154, Metallography 7, Met. 153

Mining 10, 5, Min. 9

Mining 4, Mine Mapping, 6, Min. 2f

Field Work. Months of May, June, July, and August
 Metallurgy 6f, beginning about May 1
 Mining 10f, beginning about May 15
 Practical work in mills and smelters beginning about June 1

SENIOR YEAR

First Semester

Electrical Engineering, 53, Electric Power, 5, Physics, 3, 4 Geology 111, Ore Deposits, 4

Mechanics 13, Water Power, 5, Mech. 10

Metallurgy 7, Ore Testing, 10, Met. 5, 6, 106

Metallurgy 11, Thesis, 8, Met. 106, Met. 5, 6, and 13

Metallurgy 109, Electrometallurgy, 8, Met. 3, 4, 105, and 106

Second Semester

Geology 112, Problems in Ore Deposits, 4 Metallurgy 8, Special Problems, 8, Met. 7 Metallurgy 10, Advanced Metallurgy 10, Met. 7 Metallurgy 16, Thesis, 18, Met. 11

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use. The practical work consists in visits to smelting and refining works which are accessible. The work in Metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags is shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their report in detail. This work is offered to students completing the necessary courses in Mineralogy and Chemistry.

ORE DRESSING

The lectures and recitations in Ore Dressing extend through the junior year, and comprise the detailed study of ore dressing and concentrating machinery, together with the study of typical combinations of dressing machines as found in the several mining districts of the United States. In connection with the theoretical work, the ore dressing laboratory and testing plant of the School is utilized for practical illustrations.

ORE TESTING

The lectures treat of the use and purposes of all the machinery connected with the subject, supplemented by detailed drawings. There are complete testing works, connected with the department where the student may see the working of, and handle for himself crushers, rolls, and concentrating machinery, as well as sizing apparatus and hydraulic separators. Sufficiently large amounts of ore are given to make the necessary tests upon the different machines and the students report the best method of treatment. The courses run through the senior year and are required of students both in Mining and Metallurgy.

The ore-testing works meet educational, as well as commercial, needs. *Educational.*—The ore-testing plant acquaints the student with the construction and manipulation of the principal typical machines used in the leading ore-dressing establishments of the country. It is here that students in Mining and Metallurgical Engineering get the requisite practical experience. They handle all machines and operate on sufficiently large amounts of material to determine the methods best suited to a given ore to extract the largest amount of metal with the least possible loss.

Commercial.—Ore-testing works are an important factor in mining and metallurgical projects. The commercial object is to determine the best method of treating a given ore so as to yield the largest percentage of the metal it contains at the least possible cost. Samples varying from 500 pounds to car-load lots can be treated by various methods.

As the funds appropriated for the erection of such a plant were sufficient to purchase only the necessary machinery, the business men of Minneapolis generously provided a suitable building. The building, 94 by 66 feet, is built of brick and stone.

FIELD WORK IN METALLURGY

At the end of the junior year students are required to study practical operations at one or more smelters and mills. This work will begin about May I. Not over three weeks' time will be devoted to this work.

Upon termination of the junior field work in Metallurgy and one week in Mining (not later than June I), the members of the junior class who are candidates for the Degree of Metallurgical Engineer, are required to spend at least six weeks in practical work in one or more of the smelters or mills, for which they may receive wages. The department will render all possible assistance in locating students in districts of their choice. Each student must keep a diary and record therein, in minute detail, all observations and sketches. He must, in person, submit this diary to the department on the date of reopening of field work at the School. In judging the character of the student's field work equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject note-books considered below standard.

Field work will reopen at the School of Mines, Tuesday, September 17, 1918. No senior will be registered after that date. Registration will cover Field Work, Electric Power, and Geology.

The final reports covering field work in Metallurgy and Mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: Metallurgy, September 17 to 24, inclusive; Mining and Mine Plant, September 25 to October I.

On October I all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October I. These reports shall become the property of the School.

METALLOGRAPHY

Courses in Metallography are offered to seniors who are candidates for the degree of Metallurgical Engineer, students in the Colleges of Science, Literature, and the Arts, Engineering, Chemistry, and the Graduate School.

These courses deal with the microscopic examination of metals, alloys, and ores. The lectures treat of and describe the apparatus used in connection with this subject, the methods of preparing specimens, the physical, chemical, and metallurgical principles involved, and the interpretation of the results of microscopic examination. A collection of specimens, microphotographs, and lantern slides covering wrought iron, low carbon, structural, rail, and tool steels, brasses, bronzes, and other industrial alloys are available for study and comparison. The laboratory course includes the microscopic and pyrometric study of metals, alloys, and ores. The laboratory is equipped with microscopes, electric and portable gas furnaces, and pyrometers of the latest and improved types. A special dark room is available for the preparation of microphotographs.

EXPLANATION OF COURSE NUMBERS

Odd numbers indicate first-semester courses; even numbers, secondsemester courses. A combination of the two (e.g., 5-6) indicates courses continuing through the year. The suffixes a and b apply to one-semester courses offered both semesters, a indicating the first semester and b the second semester (e.g., 3a,b; 4a,b). The suffix f indicates summer field work.

All undergraduate courses are numbered from I to 100. All courses open to undergraduates and graduates are numbered from 101 to 200. Strictly graduate courses are numbered from 201 up.

CHEMISTRY

Professors George B. FRANKFORTER, CHARLES F. SIDENER; Instructors Woldemar M. Sternberg, Isaac W. Geiger, H. Lee Ward; Assistant Mrs. Barbara L. Lund.

COURSES

		Lect. or	Lab.		
No.	, Title	rec. hrs.	hrs.	· Required of	Prereq. courses
5.	Gen. & Anal. Chemistry	3	2	All fr.	
6.	Gen. & Anal. Chemistry	I	. е	All fr.	5
II.	Quantitative Analysis	I	б	All soph.	6
12.	Quantitative Analysis	і	б	All soph.	II
24.	Iron & Steel Analysis	I	6	Elective	I 2
25.	Ore & Slag Analysis	I	б	 Elective 	12
I44.	Electrochemistry	I	4	Elective	12

- 5-6. GENERAL AND ANALYTICAL CHEMISTRY. An introduction to descriptive, physical, and metallurgical chemistry and qualitative analysis. GEIGER and Assistants.
- 11-12. QUANTITATIVE ANALYSIS. A general discussion of quantitative methods, with laboratory work in gravimetric analysis, first semester; followed by a discussion of standard solutions and the necessary stoichiometric calculations with laboratory work in volumetric analysis, second semester. SIDENER, STERNBERG.
- 24. IRON AND STEEL ANALYSIS. Includes technical methods for the determination of the common constituents of iron ores, iron, and steel, with training in rapid work. SIDENER, and Assistants.
- 25. ORE AND SLAG ANALYSIS. Rapid technical method for the determination of certain constituents in ores and slags. SIDENER.
- 144. ELECTROCHEMISTRY. A discussion of electro-analytical methods and industrial electrochemical processes, and their underlying principles. WARD.

DRAWING AND DESCRIPTIVE GEOMETRY

Professor WILLIAM H. KIRCHNER; Assistant Professor Robert W. French; Instructors Ingvald Kvitrud, Howard D. Myers.*

COURSES

No.		Lect. or rec. hrs.		Required of	Prereq. courses
11. Ei	ngineering Drawing		IO	All fr.	
12. E1	ngineering Drawing		8	All fr.	II
13. De	escriptive Geometry	2		All soph.	12, Math. 6
14. Di	rafting		4	All soph.	п 3

- 11. ENGINEERING DRAWING. Sketching, lettering, representation, including parallel and radial projection, elements of drafting, details of machines and structures, interpretation of working drawings. KIRCHNER, KVITRUD, MYERS.
- 12. ENGINEERING DRAWING. Continuation of Course 11 as outlined above. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. Maps and sketches. Brush and pen conventions. KVITRUD, MYERS.
- 13. DESCRIPTIVE GEOMETRY. Projection; central and special cases, principles and applications, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems. KIRCHNER.
- 14. DRAFTING. Graphics, machine drafting, and structural drafting. Instruction in drafting room methods. FRENCH.

ELECTRICAL ENGINEERING

Professor George D. SHEPARDSON; Assistant Professor WILLIAM T. RYAN.

COURSES

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
53. Electric	Power	2	2	Sr. E. M. & Met. E.	Physics 3, 4

55. ELECTRIC POWER. Elementary principles of continuous currents. Continuous current generators and motors. Elementary principles of alternating currents. Alternating current generators, transformers, and motors. Measurement of power. Elementary principles of transmission and distribution. Lectures, recitation, and laboratory work. RYAN.

* On leave of absence, 1918-19.

EXPERIMENTAL- ENGINEERING

Professors John R. Allen, William E. Brooke; Associate Professor Adolph F. Meyer; Assistant Professors Franklin R. McMillan,* Frank B. Rowley, Charles F. Shoop; Instructor Amos F. Moyer.

COURSES

No.	Title	Lect. or rec. hrs.		Required of	Prereq. courses
101a,b.	Materials Testing Lab		4	Jr. E. M. & Met. E.	With Math. 11
102a,b.	Elementary Laboratory		4	Jr. E. M. & Met. E.	With Math. 10
108.	Experimental Laboratory.		4	Sr. E. M. & Met. E.	21

- IOIA,b. MATERIALS TESTING LABORATORY. Investigation of physical properties of metals and engineering materials: wood, cement, ropes, etc. supplemented by lectures on materials of construction and methods of testing. Mining and Metallurgical Engineers carry Course IOIb for twelve weeks only.
- 102a,b. ELEMENTARY LABORATORY. Calibration of gages, pitot tube, indicator spring, thermometers, weir notches, etc., lubricants, steam calorimeters, valve setting, engine clearance. Tests of hoists, water motor, ram, pulsometer, steam and internal combustion engines. Tests of power pump. Boiler trial.
- 108. EXPERIMENTAL LABORATORY. (Twelve weeks' course.) Hydraulic measurements. Tests of water motors, rams, steam pumps, steam engines, and boilers.

GEOLOGY AND MINERALOGY

Professors William H. Emmons, Clinton R. Stauffer; Associate Professor Frank F. Grout; Assistant Professors A. Walfred Johnston, Terence T. Quirke; Instructor Thomas M. Broderick.

COURSES

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
ıb.	General Geology	3		All soph.	24
ıf.	Field Work		2 wks.	All soph.	1b and 105
II.	Paleontology	3		Sr. E. M. (Geol.)	ıþ
I 2.	Paleontology	3	• •	Sr. E. M. (Geol.)	II
23.	Elements of Mineralogy	. 4	4	All fr.	
24.	Descriptive Mineralogy	2	2	All fr.	23
73.	Histor. & Econ. Geology	3	• •	All jr.	1b and 105
105.	Elements of Rock Study		4	All soph.	24
106.	Petrology		4	All soph.	105
III.	Ore Deposits	4	•• .	Sr.E.M.&E.M.(Geol.)	
II2.	Problems in Ore Deposits		4	Sr.E.M.&E.M.(Geol.)	III
124.	Struct. & Metamorph. Geol.	3		Jr. E. M. (Geol.)	73 and 105
131.	Advanced Petrology	2	3	Jr. E. M. (Geol.)	106, 1b

* On leave of absence, 1918-19.

DEPARTMENTAL STATEMENTS

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
132. Advanced	Petrology	2	3	Jr. E. M. (Geol.)	131
137. Testing E	con. Minerals	. x	. 4	Elective	24,73
140. Applied P	etrology	. I	4	Elective	See statement
144. Constructi	on & Interpret	a-			
tion of	Geologic Maps.		4	Elective	73
150. Field Geol	logy			Jr. E. M. (Geol.)	124
151. Advanced	General Geology	7. 3		Jr. E. M. (Geol.)	73
152. Advanced	General Geology	7. 3	•• .	Jr. E. M. (Geol.)	151
246. Pre-Cambr	rian Geology	3	3	Elective	124
247. Geol. & E	xploration of Lal	ce			
Superior	r Region	•• 3		Elective	124

- Ib. GENERAL GEOLOGY. A synoptical treatment of materials of the earth and of geologic processes. Physiographic, dynamic, and structural geology, with a brief introduction to Historical Geology. JOHNSTON.
- If. FIELD WORK. About two weeks in June are spent in geologic mapping of selected areas in the iron districts of Minnesota. Involves preparation of geologic maps, and written reports.
- **II.** PALEONTOLOGY. A study of fossil forms with special reference to those of geologic importance. STAUFFER.
- 12. PALEONTOLOGY. Faunas and their correlation. A continuation of Course 11. STAUFFER.
- 23. ELEMENTS OF MINERALOGY. The crystal systems; morphological, physical, and chemical character of minerals; occurrence, genesis, and uses of minerals; classifications and description of common minerals. Determinative work in laboratory, blowpipe analysis, sight identification. BRODERICK, GROUT.
- 24. DESCRIPTIVE MINERALOGY. A continuation of Course 23, special attention being given to metalliferous and rock-forming minerals. Laboratory determination and sight identification. The use of the goniometer and microscope. Laboratory work, reference reading, and field excursions. BRODERICK, GROUT.
- 73. HISTORICAL AND ECONOMIC GEOLOGY. (a) Historical Geology. Geologic history of North America, with special reference to its syngenetic mineral deposits. (b) Economic Geology. Study of non-metallic minerals of economic value, and discussions of geologic guides to prospecting for these deposits. EMMONS, QUIRKE.
- 105. ELEMENTS OF ROCK STUDY. The occurrence and genesis of igneous, sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and alteration. The classification and methods of identification and description of rocks. BRODERICK, GROUT.
- 106. PETROLOGY. The identification and study of minerals and rocks by optical methods; the study of igneous rocks, crystalline schists, and

metamorphic rocks. The origin and classification of rocks. BROD-ERICK, GROUT.

- **III.** ORE DEPOSITS. The nature, distribution, and genesis of ore deposits of the United States; relations of ore deposits to geologic structure; the deformation and superficial alteration of ore deposits. EMMONS.
- 112. PROBLEMS IN ORE DEPOSITS. Field excursions, map work, lectures on field and laboratory methods. EMMONS.
- 124. STRUCTURAL AND METAMORPHIC GEOLOGY. The conditions, processes, and results of metamorphism; structural features resulting from deformation under varying conditions of load. JOHNSTON.
- 131-132. ADVANCED PETROLOGY. Advanced optical methods. Criteria for rapid identification of minerals and rocks. The uses of schedules and tables. Standard rock types. Regional and genetic studies. Petrographic reports. GROUT.
- 137. TESTING ECONOMIC MINERALS. Methods of determining quality of mineral deposits, described and illustrated by laboratory tests of coal, oil, building stone, and metallic ores. GROUT.
- 140. APPLIED PETROLOGY. To follow or accompany Course 132. Determination of transparent and opaque ores and gangue minerals. Microscopic studies of paragenesis of ores and other mineral associations by means of reflecting light. Practical petrographic problems. GROUT.
- 144. CONSTRUCTION AND INTERPRETATION OF GEOLOGIC MAPS. Hours to be arranged. Methods of geologic examination; problems in construction and interpretation of geologic maps and sections, with special reference to underground mapping of metalliferous areas. QUIRKE.
- 150. FIELD GEOLOGY. Detailed and systematic work conforming with standards of official surveys. Preparation of geologic maps, structure sections, and reports; a study of the paragenesis of ores and their relations to geologic structures. Field for 1917-18, Black Hills, South Dakota. Еммонх, JOHNSTON.
- 151. ADVANCED GENERAL GEOLOGY. Geologic processes and their results; development of the North American continent. STAUFFER.
- 152. ADVANCED GENERAL GEOLOGY. A continuation of Course 151. STAUF-FER.
- 246. PRE-CAMBRIAN GEOLOGY. The problems of pre-Cambrian correlation and structure; the pre-Cambrian stratigraphy of North America. Given in alternate years. Three credits. Not offered in 1917-18. JOHNSTON.
- 247. GEOLOGY AND EXPLORATION OF LAKE SUPERIOR REGION. The geology of the Lake Superior iron districts. Methods used in the exploration

of iron ore; interpretation of drill cores; cartographic expression of drill data; models of drilled areas. Principles of magnetic surveying. Three credits. JOHNSTON.

GERMAN

Professor Carl Schlenker; Assistant Professors Oscar C. Burkhard, James Davies, Alfred Koenig, Samuel Kroesch, Walter R. Myers; Instructors Elise F. Dexter, Arthur R. Graves, Edwin H. Zeydel.

COURSES

No.	Title	Rec. hrs.	Required of	Prerequisite courses
ra,b.	Beginning	6	Jr. E. M. (Geol.)	
3a,b.	Intermediate	6	Jr. E. M. (Geol.)	ıa,b.
5-6.	Prose and Poetry	. 6*	Elective	2 yrs. prep. German
11-12.	Rapid Reading	. 6*	Elective	3a or 3b
2 I-22,	Scientific Intermediate	. 6*	Elective	1-3 or equivalent
23-24.	Adv. Scientific Reading	б*	Elective	5-6 or 4 yrs. prep. Ger.

* Both semesters must be completed before credit is given for either semester.

- IA,b. BEGINNING. Double course. Pronunciation, grammar, conversation, and composition; selected readings in easy prose and verse. KOENIG, KROESCH, MYERS.
- 3a,b. INTERMEDIATE. Double course. Selected texts in modern narrative and descriptive prose; selected lyrics and ballads; a drama of Lessing, Goethe, or Schiller. Assigned reading of texts outside of class. KOENIG, KROESCH, MYERS.
- 5-6. PROSE AND POETRY. Geography, history, and legend. Review of German grammar throughout the year. BURKHARD, DAVIES, GRAVES.
- 11-12. RAPID READING. First semester: narrative prose; Hauff, Storm, Sudermann. Second semester: Plays of Lessing, Goethe, Schiller, Hebbel. Assigned readings and reports. DAVIES, GRAVES.
- 21-22. SCIENTIFIC INTERMEDIATE. This course aims to give students a reading knowledge of German for use in scientific studies. GRAVES.
- 23-24. ADVANCED SCIENTIFIC READING. Reading of monographs and periodicals. Not open to those who have credit for Course 7-8. May be supplemented by Course 20-30.

MECHANICAL ENGINEERING

Professor John J. Flather; Assistant Professor S. Carl Shipley; Instructors Francis A. Hobart, Edward Quigley, William H. Richards, William E. Bryant.

COURSES

No.	Title	Lab. hrs.	Required of	Prereq. courses
1a. Patteri	n Making	6 (9 wks.)	1st-yr. E. M. & Met. E.	
1b. Found:	ry	6 (9 wks.)	1st-yr. E. M. & Met. E.	••
ic. Forge		6 (9 wks.)	ıst-yr. E. M. & Met. E.	
rd. Machin	ne & Bench work	6 (9 wks.)	ıst-yr. E. M. & Met. E.	

- Ia. PATTERN MAKING. Use of tools, lathe and bench work, making of timber joints, core boxes, and flasks. RICHARDS.
- Ib. FOUNDRY. Molding, core making, mixing and casting metals. BRYANT.
- IC. FORGE. Use of tools, forging, welding, tool dressings and tempering. QUIGLEY.
- Id. MACHINE AND BENCH WORK. Use of tools and elementary machine operations. Shipley, HOBART.

METALLURGY

Professors William R. Appleby, Peter Christianson, Levi B. Pease; Assistant Professor Samuel L. Hoyt; Instructor Elwyn L. Smith; Assistant Francis B. Foley.

COURSES

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
2.	Assaying	4	8	All fr.	Chem. 5, Min-
					eral, 23
	Gen. Met. & Iron & Steel.	3	• •	Soph. E. M. & Met. E.	2, Chem. 6
	Wrought Iron & Steel	3	••	Soph. E. M. & Met. E.	3
	Ore Dressing	4	• •	All jr.	••
	Ore Dressing	4	• •	All jr.	••
6f.	Field Work in Metallurgy.	** 1	to days	Jr. E. M. & Met. E.	Satisfactory
					completion
-	Ore Testing		8	Sr. E. M. & Met. E.	of jr. year 106,5
		2	0	Sr. E. M. & Met. E.	100, 5
0.	Special Problems in Ore			C. T. M. P.M. t. T.	_
	Testing	•••	4	Sr. E. M. & Met. E.	7
	Advanced Metallurgy	2	8	Sr. Met. E.	7
	Thesis in Metallurgy	• •	8	Sr. Met. E.	106,5
	Ore Dressing Lab	• •	4	Jr. Met. E:	Geol. 23 & 24
	Ore Dressing Lab		4	Jr. Met. E.	5 & 13
	Thesis & Specifications	· · ·	18	Sr. Met. E.	II
	Met. of Base Metals	4	••	Jr. E. M. & Met. E.	4
	Met. of Precious Metals	4	••	Jr. E. M. & Met. E.	105
-	Electrometallurgy	3	••	Sr. Met. E.	2, 4, 105, 106
153.	Metallography	. 3	4	Jr. Met. E.	Chem. 12, Phys. 1 & 2
	Mada II a muse the			T. Mat E	Met. 153
	Metallography	3	4	Jr. Met. E. Elective	
	Metallog. for Engineers	3	4		Mech. Eng. 3 & 4
	Adv. Met. for Engineers	3	4	Elective	Met. 157
	Metallog. for Chemists	2	2	Elective	Chem. 12
	Dental Metallography	3	••	Elective	
	Advanced Metallog	To be		Elective	Met. 154
164.	Advanced Metallog	To be	ar.	Elective	••

- 2. Assaying. Determination of values of ores, metallurgical products, and bullion. Appleby and Assistants.
- 3. GENERAL METALLURGY AND METALLURGY OF IRON. Including the subjects of combustion, fuels, refractory materials, and furnaces. Lectures and recitations on metallurgy of iron. CHRISTIANSON.
- 4. METALLURGY OF WROUGHT JRON AND STEEL. Puddling and hearth processes for the production of wrought iron. Cementation, crucible, Bessemer and open hearth processes for the production of steel. General principles and construction of furnaces. CHRISTIANSON.
- 5-6. ORE DRESSING. Examination of ores, crushing, sizing classification, and methods of mechanical separation. SMITH.
- 6f. FIELD WORK IN METALLURGY. Study of metallurgical operations at smelters and mills. Detailed report is required covering plants visited. CHRISTIANSON, PEASE.
- 7. ORE TESTING. Determinations of methods of ore treatment, stamping, concentration, cyanidation, roasting, amalgamation, and flotation. CHRISTIANSON and Assistants.
- 8. SPECIAL PROBLEMS IN ORE TESTING. Continuation of Course 7. Assay of mill and smelter products so as to regulate smelting charges and roasting operations. PEASE and Assistants.
- 10. ADVANCED METALLURGY. Pyrometry, calorimetry, metallurgical calculations to determine heat distribution and heat balance. CHRISTIANSON.
- **II.** SPECIAL PROBLEMS IN METALLURGY. Research work preparatory to thesis. Appleby and Assistants.
- 13-14. ORE DRESSING LABORATORY. Practical problems in crushing, sizing, classification, and concentration of minerals. SMITH.
- 16. THESIS AND SPECIFICATIONS. Detailed investigations of ore treatment, with report including designs and specifications for suitable plants. AFPLEBY and Assistants.
- **105.** METALLURGY OF THE BASE METALS. Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining methods. PEASE.
- **109.** ELECTROMETALLURGY. Application of electricity to production of heat for smelting ores and refining metals. Costs of fuel and electricity for heating, relative efficiencies of electric and fuel furnaces. Construction of high temperature furnaces and commercial plants. CHRISTIANSON.
- 153-154. METALLOGRAPHY. Theory of metallic alloys. Metallographic technique. Properties of metals and alloys. Metallography of iron and steel and commercial alloys. Technical metallography. Hoyt.

- 157. METALLOGRAPHY FOR CHEMICAL STUDENTS. The preparation of metallic alloys; their microscopical and thermal analysis. Steel and other commercial alloys with particular reference to chemical metallurgy. Corrosion of steel and non-ferrous alloys. Metallography applied to analytical chemistry. Hoyr.
- 161. DENTAL METALLOGRAPHY. Study of the dental alloys from the standpoint of metallography. Hoyr.
- 163-164. ADVANCED METALLOGRAPHY. Technical and scientific research. The study of steel rails, automobile and locomotive parts, tool steels, etc. Special problems in metallography with outside reading. Seminar work on the recent advances in metallography. Hoyt.

MINE PLANT AND MECHANICS

Professor Elting H. Comstock; Assistant Professor Edwin M. Lambert; Instructors Anders J. Carlson, Edward W. Davis.

COURSES

		Lect. or	Lab.	h.,	_
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
I.	Algebra	3		All 1st-yr. students	••
2.	Computation & Mensuration.	3 .	• •	All 1st-yr. students	
5.	Algebra & Trigonometry	6		All fr.	I & 2
6.	Spherical Trig. & Anal. Geom.	6		All fr.	5
7.	Calculus	5		'All soph.	6
8.	Calculus	3		All soph.	7
9.	Mechanics	5	÷.	All jr.	. 8
10.	Mechanics	6		All jr.	9
II.	Mine Plant	5	1200	Jr. E. M. & Met. E.	8
12.	Mine Plant	6		Jr. E. M.	II.
13.	Hydraulics & Water-Power	5	6.4	All sr.	IO
14.	Metallurgical Power Plant	2		Jr. Met. E.	II
15.	Engineering Construction	I	4	Sr. E. M. & Met. E.	10
16.	Mine Plant Design		IO.	Sr. E. M.	15
18.	Mill and Smelter Design		6	Sr. Met. E.	15

- ALGEBRA. Equations with one or more unknown quantities, inequalities, involution and evolution, theory of exponents, surds, quadratic equations, numerical and literal, equations with unknown quantities that can be solved by means of quadratic equations, progressions. CARLSON.
- 2. COMPUTATION AND MENSURATION. Demonstrations of most important theorems of solid geometry. Volumes, approximate volumes, prismoidal formula, etc. Approximate computation, graphs, and graphical computation, logarithms and logarithmic computation, areas and approximations of areas, use of slide rule. CARLSON.
- 5. ALGEBRA AND TRIGONOMETRY. Functions, functional notation, factor and remainder theorems, factors and values of functions, determinants, development of functions, theory of equations, permutations and combinations; trigonometric ratios, right triangles, definitions of trigo-

nometric functions, analytic relations, trigonometric equations, etc. COMSTOCK.

- 6. SPHERICAL TRIGONOMETRY AND ANALYTICAL GEOMETRY. Solution of spherical triangles; systems of coördinates, loci, equations and properties of straight line, transformation of coördinates, equations and properties of conics, equations of second degree, higher plane curves, space coördinates, point, plane, quadric surfaces, etc. COMSTOCK.
- CALCULUS. Nature of differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, expansion of functions, indeterminate forms, partial derivatives, change of variable. CARLSON.
- 8. CALCULUS. Elementary integration, undetermined coefficients, rational fractions, rationalization, formulas of reduction, hyperbolic functions, some differential equations of mechanics. CARLSON.
- 9. MECHANICS. Composition and resolution of forces, laws of equilibrium, practical applications, rectilinear motion, circular motion, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy; elementary mechanics of materials. LAMBERT.
- 10. MECHANICS. Mechanical and elastic properties of materials of construction; beams, shafts, columns, reinforced concrete, hollow cylinders and spheres, rollers, plates; theory of internal stress. LAMBERT.
- 11-12. MINE PLANT. Discussion of the machinery and appurtenances employed in the equipment of mines. Air compression, mechanical features of hoisting, pumping, ventilation, underground transportation. Electricity applied to mining. COMSTOCK.
- 13. HYDRAULICS AND WATER-POWER. Laws of the equilibrium, pressure, and flow of liquids, estimation of power to be developed at a power site, dams and appendages, theory of water wheels and turbines, speed control, power-house equipment, transmission. CARLSON.
- 14. METALLURGICAL PLANT. Power, air, and water supply for metallurgical plants. Comstock.
- 15. ENGINEERING CONSTRUCTION. Theory of structures, loading, analytic and graphic resolution of stresses in framed structures, stresses in mining structures, design of mining structures. LAMBERT.
- 16. MINE PLANT DESIGN. A study of power possibilities, costs, etc., and designs of a power plant, surface equipment, and structures for a mine. COMSTOCK.
- MILL AND SMELTER DESIGN. A study of the construction and mechanical equipment of mills and smelters in connection with thesis work. COMSTOCK.

MINING

Associate Professor John F. Murphy; Assistant Professor Thomas M. BAINS, JR.

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
Ι.	Mine Surveying	3		All soph.	Math. 6
2.	Mine Surveying	3		All soph.	I,
2f.	Field Work	•••	7 wks.	All soph.	2
3.	Mine Accounting		6	All 1st-yr. students	
4.	Mine Mapping		6	All jr.	2f
б.	Mining	I		All soph.	
9.	Mining	5		All jr.	6
ΙΟ.	Mining	. 5	• •	All jr.	9
ıof.	Practical Mining	••	2 wks.	All jr.	Satisfactory completion of jr. yr.
ΙΙ.	Mining	5	• •	Sr. E. M. & E. M. (Geol.)	10
12.	Mining	5		Sr. E. M. &	
				E. M. (Geol.)	II
13.	Thesis		2 ·	Sr. E. M.	iof .
14.	Thesis	••	12	Sr. E. M. •	13

COURSES

- 2f. FIELD WORK. Practice in general surveying during the month of May. Practice in underground surveying during the first three weeks of June. This work is given on the Iron Ranges. CARLSON, LAMBERT.
- 3. ELEMENTARY MINE ACCOUNTING. Elementary accounting in general; applications to mine accounts; primary records, labor, supply, mine and mill products, and fund sheets; secondary records, invoice, labor and supply, mine and mill cost sheets, trial balance. BAINS.
- 4. MINE MAPPING. Mine mapping in accordance with prevalent practice in the western mining districts. Ore and stripping estimates and mine maps based on Mesabi Range practice. CARLSON.
- 6. MINING. Introductory course in mining. MURPHY.
- 9. MINING. Occurrence of ore bodies, prospecting, churn and diamond drilling, drilling, blasting, excavation, tunneling and drifting. BAINS.
- 10. MINING. Shaft sinking, underground mining methods, support of underground excavation. MURPHY.
- 10f. PRACTICAL MINING. Study of mining operations. Mine plant and equipment and practical mining work; a mine to be selected by department during months of May, June, July, and August. Сомsтоск, Микрну, and Assistants.
- 11. MINING. Open pit mining, quarrying, coal mining, mining alluvial deposits. MURPHY.

- 12. MINING. Drainage, transportation, ventilation, mine sanitation and hygiene, mine examination, mine management, mining law, economics of mining. BAINS.
- 13, 14. THESIS. Conference. Design and specifications of mining details required in thesis study. BAINS, MURPHY.

PHYSICS

Professors HENRY A. ERIKSON, ANTHONY ZELNEY; Instructor LOUALLEN F. MILLER.

	COU	RSES		
	Lect. or	Lab.		
No. / Title	rec. hrs.	hrs.	Required of	Prereq. courses
1. General Physics	3		All soph.	Math. 6
2. General Physics	3		All soph.	I
3. General Lab. Practice			All soph.	With I
4. General Lab. Practice	••••	2	All soph.	With 2

- I. GENERAL PHYSICS. Mechanics, heat, and sound. Treatment of such fundamental principles and problems as will best serve mining or metallurgical engineers in practical work, and develop investigative insight necessary for the solution of mining and metallurgical problems. MILLER.
- 2. GENERAL PHYSICS. Electricity, magnetism, and light, as stated under Course I. Theory illustrated by practical applications. Enough of light given to understand optical instruments of mining and metallurgy, and comprehend optical principles of crystal structure in crystallography. MILLER.
- 3. GENERAL LABORATORY PRACTICE. Measurements in mechanics and heat. Intended to develop accuracy, method, system, and experimental control. MILLER.
- 4. GENERAL LABORATORY PRACTICE. Measurements in electricity, magnetism, and light. The experiments in light being largely supplementary to the purposes stated in Course 2. MILLER.

ROMANCE LANGUAGES

Professors Everett Ward Olmsted, Irville C. Le Compte, Colbert Searles; Assistant Professors Francis B. Barton, Jules T. Frelin, Ruth S. Phelps; Instructors Solomon M. Delson, Gustave van Roosbroeck.

COURSES

No.	Title	Rec. hrs.	Required of	Prereq. courses
īb.	Beginning French	6	Jr. E. M. (Geol.)	
3b.	Intermediate French	6	Jr. or sr. E. M. (Geol.)	ıр
5.	Survey French Lit	3	Sr. E. M. (Geol.)	3p
6.	Survey French Lit	3	Sr. E. M. (Geol.)	5

- Ib. BEGINNING FRENCH. Stress on accurate pronunciation, reading, reading vocabulary, and the essentials of grammar. Daily oral and written exercises (dictation and reproduction in French). SEARLES, BAR-TON, DELSON, FRELIN, VAN ROOSBROECK.
- 3b. INTERMEDIATE. French grammar, composition, and reading; increased use of French in the classroom. Selections from modern prose and poetry. LE COMPTE, BARTON, DELSON, FRELIN, VAN ROOSBROECK.
- 5-6. GENERAL SURVEY OF FRENCH LITERATURE. Lectures, recitations, and assigned readings. Designed to cover the whole period in historical outline. Selections from representative authors. LE COMPTE, BARTON, PHELPS, VAN ROOSBROECK.

STUDENTS

SENIORS-15

Allard, Raymond W., St. Paul Armstrong, Harold K., Minneapolis Cowin, Percy G., Minneapolis Dowdell, Ralph L., St. Paul Foley, Lyndon L., Minneapolis Gannett, Roger W., Minneapolis Hsieh, Chung, Kirin, China Ingersoll, Guy E., Hibbing

Jerrard, Walter L., St. Cloud Kwong, Yih Kum, Shanghai, China Lee, Liang, Hunan, China Moga, John A., St. Paul Nichols, Clifford R., Buhl Quinn, Howard E., Melrose Strand, Harry W., Marine Mills

JUNIORS-13

Abramson, Jake, Minneapolis Barr, J. Carroll, Jr., Pittsburgh, Pa. Berg, Locksley D., Minneapolis Donaghue, Abner J., Minneapolis Flom, Frank, Minneapolis Frellsen, Sidney A., Minneapolis Goldberg, Bert, St. Paul Goldberg, Samuel B., St. Paul Hosted, Joseph O., Duluth Mellem, Walter R., St. Paul Miao, Yun Tai, Yunnan, China Rockwell, Seass A., Fargo, N. D. Sullivan, Dan C., Stillwater

SOPHOMORES-17

Arnold, Lewis E., Minneapolis Chadbourn, Charles H., Minneapolis Davies, Herman F., Minneapolis Johnsen, Trygve, St. Paul Johnson, Axel L., Benson Johnston, Kenneth A., St. Paul Kersten, Erwin H. W., Minneapolis Kirkpatrick, Roscoe C., Champlin Mark, Israel C., Minneapolis Mars, William P., Duluth Munson, Arthur M., St. Paul Olson, Paul W., Warren Peterson, Clarence D., Minneapolis Powers, Sheldon M., Minneapolis Raiter, Clifford R., Minneapolis Rydlun, Edwyn G., Minneapolis Wheeler, James D., Minneapolis

FRESHMEN-20

Butler, Roy G., St. Paul Carlson, Edwin N., Brainerd Dawson, Loren W., Minneapolis Henkel, Howard, Minneapolis Hope, Lawrence I., Minneapolis Leigh, Ralph E., Lakefield Le Roy, James J., Alexandria Lucas, John J., Minneapolis Nicholls, William J., Jr., Ely Orear, Benjamin F., Minneapolis Patten, Richard C., Minneapolis Ryan, Milton A., Duluth Sebenius, Carl H., Duluth Strange, Howard E., Duluth Walz, Clarence M., Gladstone, Mich. West, Herbert S., Minneapolis Welshons, Mervyn, Stillwater Yaeger, William H., Valley City, N. D. Zanger, Eugene, Minneapolis

FIRST YEAR-6

Anderson, Oscar B., Crosby Barker, Clifton R., Excelsior Friedl, Arthur, St. Paul Kubias, Ralph L., Minneapolis Swartz, Sam, Minneapolis Swenson, Clifford H., Minneapolis

.

C 660Zmi 119/20

UNIVERSITY CALENDAR

1919-1920

1919			
September	20	Saturday	Payment of fees closes, except for new
		· ·	i students
September	23	Tuesday	Juniors and seniors, School of Mines,
			report for completion of field work.
September	26-30	Week	Examinations for removal of conditions
			and entrance examinations
September	29-30		Registration days
October	I	Wednesday	Fall quarter begins
October	16	Thursday	Senate meeting, 4:00 p.m.
November	27	Thursday	Thanksgiving Day; a holiday
December	18	Thursday	Senate meeting, 4:00 p.m.
December	23	Tuesday	Christmas vacation begins 9:00 p.m.
1920			
January	2	Friday	Christmas vacation ends 8:30 a.m.
January	2	Friday	Winter quarter begins
February	12	Thursday	Lincoln's Birthday; a holiday
February	19	Thursday	Senate meeting, 4:00 p.m.
March	25	Thursday	Winter quarter ends
April	I	Thursday	Spring quarter begins
April	2	Friday	Good Friday; a holiday
May	I	Saturday	Field work for sophomores and juniors
			in School of Mines begins
May	20	Thursday	Senate meeting, 4:00 p.m.
June	13	Sunday	Baccalaureate service
June	16	Wednesday	Spring quarter closes
June	17	Thursday	Forty-eighth Annual Commencement
June	18-19		Registration days for summer quarter
June	21	Monday	Summer quarter begins
September	3	Friday	Summer quarter ends

Program of Supplementary Examinations

Friday,	Sept. 26	9-12 a.m.	Physics
		2-5 p.m.	Chemistry, Experimental Engineering
Saturday,	Sept. 27	9-12 a.m.	Mathematics and Mechanics
		2-5 p.m.	Drawing and Descriptive Geometry
Monday,	Sept. 29	9-1 <i>2</i> a.m.	Metallurgical subjects
		2-5 p.m.	Electrical and Mechanical Engineering
			subjects, Mine Plant and Surveying
Tuesday,	Sept. 30	9-12 a.m.	Geology and Mineralogy
		2-5 p.m.	Mining subjects

THE SCHOOL OF MINES

FACULTY

- MARION LEROY BURTON, Ph.D., D.D., LL.D., President
- CYRUS NORTHROP, LL.D., President Emeritus
- WILLIAM R. APPLEBY, M.A., Dean, and Professor of Metallurgy
- JOHN R. ALLEN, M.E., Professor of Mechanical Engineering
- THOMAS M. BAINS, Jr., E.M., Associate Professor of Mining
- FRANCIS B. BARTON, Ph.D., Assistant Professor of Romance Languages
- FRANK W. BLISS, M.S., Assistant Professor of Chemistry
- WILLIAM E. BROOKE, B.C.E., M.A., Professor of Mathematics and Mechanics
- OSCAR C. BURKHARD, Ph.D., Assistant Professor of German
- ANDERS J. CARLSON, C.E., Assistant Professor of Mine Plant and Mechanics
- PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy
- ELTING H. COMSTOCK, M.S., Professor of Mine Plant and Mechanics
- JAMES DAVIES, Ph.D., Assistant Professor of German
- WILLIAM H. EMMONS, Ph.D., Professor of Geology and Mineralogy
- HENRY A. ERIKSON, Ph.D., Professor of Physics
- JULES T. FRELIN, B.A., Assistant Professor of Romance Languages
- ROBERT W. FRENCH, B.S., Assistant Professor of Drawing
- ISAAC W. GEIGER, Ph.D., Assistant Professor of Chemistry
- FRANK F. GROUT, M.S., Associate Professor of Geology and Mineralogy
- WILLIAM F. HOLMAN, Ph.D., Assistant Professor of Mathematics and Mechanics
- SAMUEL L. HOYT, E.M., Ph.D., Associate Professor of Metallography
- A. WALFRED JOHNSTON, M.A., Assistant Professor of Geology
- LAUDER W. JONES, Ph.D., Professor of Chemistry
- WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive Geometry
- ALFRED E. KOENIG, M.A., Dr. Theol., Assistant Professor of German
- SAMUEL KROESCH, Ph.D., Assistant Professor of German
- EDWIN M. LAMBERT, M.E., Associate Professor of Mining Engineering.
- IRVILLE C. LECOMPTE, Ph.D., Professor of Romance Languages
- LOUALLEN F. MILLER, B.S., M.A., Professorial Lecturer in Physics
- WALTER R. MYERS, Ph.D., Assistant Professor of German
- EVERETT W. OLMSTED, Ph.D., Professor of Romance Languages
- LEVI B. PEASE, M.S., Professor of Metallurgy
- RUTH SHEPARD PHELPS, M.S., Assistant Professor of Romance Languages
- TERENCE T. QUIRKE, E.M., Ph.D., Assistant Professor of Geology
- FRANK B. ROWLEY, M.E., Assistant Professor of Experimental Engineering
- WILLIAM T. RYAN, E.E., Assistant Professor of Electrical Engineering CARL SCHLENKER, B.A., Professor of German
- COLBERT SEARLES, Ph.D., Professor of Romance Languages

FACULTY

GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Professor of Electrical Engineering
CHARLES F. SHOOP, B.S., Assistant Professor of Experimental Engineering
CHARLES F. SIDENER, B.S., Professor of Chemistry
M. CANNON SNEED, Associate Professor of Chemistry
CLINTON R. STAUFFER, Ph.D., Professor of Geology
ANTHONY ZELENY, Ph.D., Professor of Physics
LEON ARCHIBALD, C.E., Instructor in Drawing and Descriptive Geometry
THOMAS M. BRODERICK, Ph.D., Instructor in Geology
RALPH L. DOWDELL, Met.E., Instructor in Metallography
AMOS F. MOYER, M.E., Instructor in Experimental Engineering
*HOWARD D. MYERS, B.S. in C.E., Instructor in Drawing
JAMES C. SANDERSON, Ph.D., Instructor in Mine Plant and Mechanics
ELWYN L. SMITH, B.S., Instructor in Metallurgy
ELIZABETH B. HENDERSON, Librarian

* On leave of absence, 1919-20.

GENERAL INFORMATION

The School of Mines was established by the Board of Regents in 1888, upon recommendation of the general Faculty of the University. The buildings and laboratories of the School are located on the main campus of the University. The mining districts of Minnesota are within a few hours, by rail, from Minneapolis. The heartiest coöperation exists between the various mine managements and the School, so that the mining properties are at all times open to parties from the School for observation and study trips. Practical surveying, geological field work, and underground work are carried on in one or more of the districts. Students in the School of Mines have, therefore, all the advantages afforded by a large university combined with ample opportunity for field observation and experience.

The School of Mines occupies the new building provided by the Legislature of 1913. In the basement are the assay and electro-metallurgical laboratories, together with machinery room, instrument room, balance room, furnace rooms, and necessary storerooms. On the first floor are the administrative offices, offices and lecture rooms of the Departments of Metallurgy and Mine Plant and Mechanics. On the second floor are the offices, lecture rooms, and drafting rooms of the Department of Mining, the ore-dressing laboratory, and the library of the School. On the third floor are the offices, laboratories, and lecture rooms of the Department of Metallography, the Department of Mining Engineering, junior drafting room, photographic dark rooms, blue-printing room, and offices and computing rooms for the branch of the Experiment Station serving the Tax Commission.

DEGREES

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of Engineer of Mines (E.M.), Engineer of Mines in Geology [E.M. (Geology)], and Metallurgical Engineer (Met.E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four years, and vice versa, provided such candidate completes an additional year's work at the School and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and Architecture, and in the School of Analytical and Applied Chemistry, who contemplate taking a degree in this School after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thoro courses in mechanics, mathematics, surveying, physics, chemistry, and the necessary theory and practice of structural, mechanical, and electrical engineering.

(a) Geology—to determine the location of the ore. (b) Mineralogy to determine its nature. (c) Assaying—to determine if it has value for treatment. (d) Mining Engineering—to furnish material for treatment. (e) Ore Testing—to determine best methods of treatment. (f) Ore Dressing—furnishing products for metallurgical treatment. (g) Metallurgy—smelting and refining ores and ore dressing products; reduction to metals.

. EXPERIMENT STATION

The School of Mines Experiment Station has been recently established to promote the development of the mining and mineral resources of the state, to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates for the Tax Commission, and to do such other work along the lines above outlined as may be requested by other state departments. Coöperation has been effected with the U. S. Bureau of Mines, the U. S. Geological Survey, the Minnesota Geological Survey, and the School of Chemistry.

The Experiment Station is prepared to assist citizens interested in these lines of work; to assay specimens of ore, rocks, clays, and minerals, found within the state, free of charge.

In submitting samples the sender must state the exact location where each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the office of the Station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, The University of Minnesota, Minneapolis, Minnesota.

ADMISSION

The courses leading to the degrees of Engineer of Mines, Engineer of Mines (in Geology), and Metallurgical Engineer may be completed in four years.

Freshmen will be divided into two sections as follows:

A. Those entering with credits in higher algebra and solid geometry.

B. Those entering without credits in higher algebra and solid geometry. Students in Section B will carry a special course in mathematics during their freshman year.

Details as to admission and entrance requirements, description of subjects accepted for admission, and list of fees and expenses will be found in the Bulletin of General Information, which will be sent to any address upon application to the Registrar, the University of Minnesota, Minneapolis.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

ADMISSION TO ADVANCED STANDING

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrollment Committee of the School of Mines.

GRADUATION

Students completing courses of study to the satisfaction of the Faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examinations in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least one full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the Faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examinations for the third quarter. Irregular attendance will debar a student from entering all final examinations.

THESIS

The thesis work is intended to bring in review and connect the work in Mining and Metallurgy, Geology and Mineralogy, Mechanical and Electrical Engineering, Mathematics and Mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology, for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem, for candidates for the degree of Metallurgical Engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

Prior to the reopening of Field Work at the School of Mines, Tuesday, September 23, 1919, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on the project must be under way by December 1. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the School.

SPECIAL NOTES

Students failing to receive a quarter mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the Registrar his average in all subjects and present himself for supplementary examinations, according to the program on page 3.

Failure of the Registrar to notify a student of deficiencies will not be accepted as a reason for neglecting to report for necessary supplementary examinations. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made. Students failing to receive a quarter mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The Faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination for any quarter will be given zero on the examinations.

Students whose absences in any quarter exceed 20 per cent of the scheduled class hours will not be permitted to take examinations without special permission of the Faculty.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

During the academic year students will be held responsible for the receipt of official communications sent to them through the University post-office. During the summer vacation they will be held responsible for the receipt of such communications sent to the home address given on registration blank for the preceding academic year, unless formal notification of their correct address is filed with the Registrar and the Dean.

COURSES OF STUDY

UNIFORM CURRICULUM TO END OF SOPHOMORE YEAR

The courses leading to the degrees of Engineer of Mines, Engineer of Mines in Geology, and Metallurgical Engineer are uniform for the first two years.

Freshmen will be divided into two sections as follows:

- A. Those entering with credits in advanced algebra and solid geometry.
- B. Those entering without credits in advanced algebra and solid geometry.

Subjects with the prefix A are to be taken by freshmen in section A; those with the prefix B are to be taken by freshmen in section B; and those without prefix are to be taken by students of both sections.

FRESHMAN YEAR

First Quarter

Chemistry 1f*, General Inorganic, 7[†] Drawing 11f, Engineering Drawing, 10 A. Mathematics 2f, Algebra, 6 B. Mathematics 1f, Algebra and Solid Geometry, 6 Mineralogy 23f, Elements of Mineralogy, 8 Military Drill

Second Quarter

Chemistry 2w, General Inorganic, 7, Chem. 1f Drawing 12w, Engineering Drawing, 8, Draw. 11f Mathematics 4w, Trigonometry, 6 Metallurgy 1w, Assaying, 4, Chem. 1f, Mineral. 23f Metallurgy 2w, Assaying Laboratory, 8, Chem. 1f, Mineral. 23f Mineralogy 24w, Elements of Mineralogy, 4 Military Drill

Third Quarter

Chemistry 35, General Inorganic, 7, Chem. 2w Drawing 135, Engineering Drawing, 8, Draw. 12w Mathematics 55, Analytical Geometry, 6, Math. 4w B. Mathematics 35, Algebra, 4, Math. 1f Mineralogy 255, Elements of Mineralogy, 8 Military Drill

^{*} The suffixes f, w, or s, after the course number indicate the quarter in which a course is offered—fall, winter, or spring quarter respectively. Two or three suffixes indicate that a course is offered in each of the corresponding quarters.

[†] Figure following the descriptive name of a course indicates number of hours per week. Course names following indicate prerequisite courses.

SOPHOMORE YEAR

First Quarter

Chemistry 11f, Qualitative Analysis, 7, Chem. 3s

Drawing 14f, Descriptive Geometry, 3, Draw. 13s, Math. 5s

Geology 105f, Rock Study, 4, Geol. 25s

Mathematics 6f, Calculus, 4, Math. 5s

Metallurgy 3f, General, 3, Met. 1w, 2w, Chem. 3s

Mining Engineering 1f, Mine Surveying, 3, Math. 4w

Physics 1f, General, 3, Math. 5s

Physics 2f, General Lab. Practice, 2, Math. 5s

Military Drill

Second Quarter

Chemistry 20w, Quantitative Analysis, 8, Chem. 11f

Drawing 15w, Drafting, 4, Draw. 14f

Geology 1w, General, 3, Geol. 125f

Geology 106w, Petrography 4, Geol. 105f

Mathematics 7w, Calculus, 3, Math. 6f

Metallurgy 4w, Met. of Pig Iron, 3, Met. 3f

Mining Engineering 2w, Mine Surveying, 3, Min. Eng. 1f

Physics 3w, General, 3, Phys. 1f

Physics 4w, General Lab. Practice, 2, Phys. If

Military Drill

Third Quarter

Geology 2s, General, 7, Geol. 105f

Mathematics 8s, Calculus, 6, Math. 7w

Metallurgy 5s, Wrought Iron and Steel, 3, Met. 4w

Mining 1s, Introductory Mining, 4

Mining Engineering 3s, Mine Surveying, 3, Min. Eng. 2w

Physics 5s, General, 3, Phys. 3w

Physics 6s, General Lab. Practice, 2, Phys. 3w Military Drill

Mintary Drin

Mining Engineering 4s, Field Work beginning about May 1, 7 weeks, Min. Eng. 3s

Geology 85, Field Work beginning about June 20, 2 weeks, Geol. 2s Underground Mining Work beginning about July 5

JUNIOR AND SENIOR YEARS

COURSES LEADING TO THE DEGREE OF E.M.

JUNIOR YEAR

First Quarter

Experimental Engineering, M.E. 83.4f, Elementary Lab. 4, with Mech. 12f Geology 73f, Economic, 3, Geol. 2s, 105f

Mechanics of, Mechanics, 5, Math. 8s

Mechanics 12f, Mine Plant, 6, Math. 8s

Metallurgy 105f, Base Metals, 4, Met. 3f

Metallurgy 12f, Ore Dressing, 3, Phys. 5s, Geol. 25s

Mining 2f, Exploration, 5, Mining 1s

Mining 6f, First Aid, I week

Second Quarter

Experimental Engineering, M. & M. 43.2w, Materials Testing Lab., 4, with Mech. 10w

Mechanics 10w, Mechanics of Materials, 5, Mech. 9f

Mechanics 13w, Mine Plant, 6, Mech. 12f

Metallurgy 106w, Base Metals, 4, Met. 105f

Metallurgy 13w, Ore Dressing, 3, Phys. 5s, Geol. 25s

Mining 3w, Tunneling, 5, Mining 2f

Mining Engineering 5w, Mine Mapping, 6, Min. Eng. 4s

Third Quarter

Mechanics 11s, Mechanics of Materials, 5, Mech. 10w

Mechanics 14s, Mine Plant, 6, Mech. 13w

Metallurgy 107s, Precious Metals, 4, Met. 106w

Metallurgy 17s, Ore-Dressing Lab., 6, Phys. 5s, Geol. 25s

Mining 4s, Mining Methods, 5, Mining 3w

Mining Engineering 6s, Mine Mapping, 6, Min. Eng. 5w

Metallurgy 21s, Field Work in Metallurgy beginning about May 1, 10 days, satisfactory completion of junior year

Mining 5s, Field Work in Mine Plant and Mining beginning about May 10, 2 weeks, satisfactory completion of junior year

SENIOR YEAR

First Quarter

Electrical Engineering 144.21f, Electric Power, 5, Phys. 55 Geology 111f, Ore Deposits; 3, Geol. 73f, 106w Mechanics 17f, Water Power, 7, Mech. 9f Mechanics 18f, Engineering Construction, 8, Mech. 115 Metallurgy 6f, Ore Testing, 2, Met. 107s Metallurgy 7f, Ore-Testing Lab., 8, Met. 107s Mining 52f, Mining Reports, 5, Mining 4s Mining 55f, Thesis, 2, Mining 4s Mining 51f, Mine Rescue, 1 week

Second Quarter

Experimental Engineering, M.E. 184.1w, Experimental Lab. 4, Exp. Eng. M.E. 83.4f

Geology 112w, Advanced Economic, 3, Geol. 111f Geology 80w, Advanced Historical, 3, Geol. 73f Mechanics 19w, Mine Plant Design, 9, Mech. 18f Metallurgy 8w, Special Problems, 4, Met. 107s Mining 53w, Mining Problems, 5, Mining 52f Mining 56w, Thesis, 12, Mining 55t

Third Quarter

Geology 1135, Problems in Ore Deposits, 4, Geol. 112w Mechanics 205, Mine Plant Design, 12, Mech. 19w Metallurgy 95, Special Problems, 8, Met. 107s Mining 54s, Mining Law, 5, Mining 53w Mining 57s, Thesis, 12, Mining 56w

DEPARTMENT OF MINING

The Department is well supplied with samples of the smaller mine equipment, models, drawings, photographs, lantern slides, and mine maps. The lectures treat of prospecting, development, support of excavations, mining methods, mine administration, mining law, and the necessary allied subjects. The courses in mining extend through the sophomore, junior, and senior years.

FIELD WORK IN MINING

JUNIOR YEAR

At the end of the junior year students are required to study mine plant and mining methods in one or more mining districts under the direction of members of the Faculty. This work begins about May I. and not over three weeks will be devoted to it. The work is carried on in the leading western metal mining districts, the exact location to be announced in April of each year. The expenses for the trip are estimated at \$225. A deposit of \$50 must be made before starting on the trip to cover board and lodging and necessary side trips. Any balance will be returned at the close of the work in the field. During the months of June, July, and August, the student is urged to spend at least six weeks in actual underground mining work in the West, for which he may receive wages. The Department will render all possible assistance in locating students in districts of their choice. Each student must keep a notebook containing a record of all observation and necessary detail sketches. These notebooks will be collected at the close of the trip and returned to the student at the reopening of field work at the School. In judging the character of the student's field work, equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below the standard that should be demanded of candidates for senior work.

Field work will reopen at the School of Mines, Tuesday, September 23, 1919. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in Mining and Metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned: Metallurgy, September 23 to 30, inclusive: Mining and Mine Plant, October 1 to 14 inclusive.

On October 14 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 14. These reports shall become the property of the School.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the Department. Should a student, for sufficient reasons, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

DEPARTMENT OF MINING ENGINEERING

MINE SURVEYING

The work in surveying is given in the sophomore year and is designed primarily for mining engineers. The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabi, Cuyuna, or Vermilion Range. The exact location will be announced in March of each year. The expenses for this trip are estimated at \$150.

The students will be divided into squads of two to four. Each student will be required to complete satisfactorily a practical course in plane and underground surveying including exercises in chaining and taping; adjustment and use of surveying instruments; solar and stellar observations; laying out railroad tangents and curves; making earthwork estimates; and other problems. In addition each squad will be required to make a yardage estimate of the stripping of an open-pit mine; to transfer a meridian, from the surface, underground and make a complete survey of an underground mine.

The data obtained will be used in the course in Mine Mapping during the winter quarter of the junior year.

A full equipment of surveying instruments of the latest and best types is furnished each squad for this work.

Courses Leading to the Degree of E.M. (Geology) JUNIOR YEAR

First Quarter

Geology 61f or 65f, Physical Mineralogy or Crystallography, 6, Mineralogy 25s

Geology 73f, Economic, 3, Geol. 2s, 105f

Geology 131f, Advanced Petrology, 6, Geol. 2s, 106w

Geology 151f, Advanced General, 3, Geol. 73f

SCHOOL OF MINES

German 1f or 21f, or French 4f or 10f, or Spanish 34f or 40f, 5 or 3 Mining 2f, Exploration, 5, Min. 18

Electives, 9

Mining 6f, First Aid, I week

Second Quarter

Geology 124w, Struct. and Metamorphic, 3, Geol. 73f, 105f Geology 132w, Advanced Petrology, 6, Geol. 2s, 106w Geology 144w, Geologic Maps, 6, Geol. 73f Geology 152w, Advanced General, 3, Geol. 73f German 2w or 22w, or French 5w or 11w, or Spanish 35w or 41w, 5 or 3 Mining 3w, Tunneling, 5, Min. 2f Mining Engineering 5w, Mine Mapping, 6, Min. Eng. 4s

Electives, 3

Third Quarter

Geology 125s, Struct. and Metamorphic, 3, Geol. 73f, 105f

Geology 133s, Advanced Petrology, 6, Geol. 2s, 106w

Geology 145s, Geologic Maps, 6, Geol. 73f

Geology 153s, Advanced General, 3, Geol. 73f

Mining 4s, Mining Methods, 5, Min. 3w

Electives, 3

Geology 150s, Field Work in Geology beginning about May 1, six weeks, Geol. 125s

Geologic Field Work beginning about June 15 with geological surveys or private companies

SENIOR YEAR

First Quarter

Geology 11f, Paleontology, 3, Geol. 2s

Geology 111f, Ore Deposits, 3, Geol. 73f, 106w

Mining 52f, Mining Reports, 5, Min. 4s

*Metallurgy 12f, Ore Dressing, 3, Phys. 5s, Geol. 25s

Thesis, 8

Electives, 9

Mining 51f, Mine Rescue, 1 week

Second Quarter

Geology 12w, Paleontology, 3, Geol. 2s Geology 137w, Testing Economic Materials, 5, Geol. 73f 140w, Applied Petrography, 5, Geol. 111f, 13s Geology 166w, Mineralography, 6, Geol. 111f *Metallurgy 13w, Ore Dressing, 3, Phys. 5s, Geol. 25s Mining 53f, Mining Problems, 5, Min. 52f Thesis, 3 Electives, 3

16

Third Quarter

Geology 13s, Paleontology, 3, Geol. 25 Geology 113s, Problems in Ore Deposits, 4, Geol. 112w Geology 141s, Applied Petrography, 5, Geol. 111f, 13s Geology 167s, Mineralography, 6, Geol. 111f *Metallurgy 17s, Ore-Dressing Lab., 6, Phys. 5s, Geol. 25s Mining 54s, Mining Law, 5, Min. 53w Thesis, 10

FIELD WORK IN GEOLOGY

At the end of the sophomore year mining students are required to devote about three weeks to geologic mapping. This course usually comes after a seven weeks' course in surveying and the fields chosen are the Vermilion and Mesabi iron ranges of Minnesota. This work is intended to train the students in the interpretation of field relations and the preparation of geologic maps and cross sections.

The second field course in geology is required only of those students who are candidates for the E.M. in Geology degree. The course begins early in May and is completed in June. The course requires altogether about six weeks' work, and the field chosen is the Black Hills region of South Dakota or some other western region. The student is trained in the interpretation of field data; in detailed mapping, underground and on the surface; in the preparation of geologic cross sections through mines; and he may gather material which will serve as a basis for future study in advanced courses the following year. The work conforms with the standards of official surveys as nearly as practicable. At the close of the field season the students are expected to obtain positions with mining companies either as miners or as engineers, or if openings are available, they may enter geological surveys for the season's work.

Field work in geology for students having taken either of the above trips will reopen at the School of Mines, Tuesday, September 23, 1919. The final reports covering the field work must be prepared at the School of Mines under the direct supervision of the Department of Geology. These reports are to be turned in to the Department on September 30.

COURSES LEADING TO THE DEGREE OF MET.E.

JUNIOR YEAR

First Quarter

Geology 73f, Economic, 3, Geol. 2s, 105f Mechanics 9f, Mechanics, 5, Math. 8s Mechanics 12f, Mine Plant, 6, Math. 8s Metallurgy 12f, Ore Dressing, 3, Phys. 5s, Geol. 25s Metallurgy 14f, Ore-Dressing Lab., 4, Phys. 5s, Geol. 25s Metallurgy 105f, Base Metals, 4, Met. 3f

* Advanced Quantitative Chemistry may replace Ore Dressing.

Metallurgy 153f, Metallography, 7, Chem. 20w, Phys. 5s Mining 2f, Exploration, 5, Min. 1s

Mining 6f, First Aid, I week

Second Quarter

Mechanics 10w, Mechanics of Materials, 5, Mech. 9f

Mechanics 13w, Mine Plant, 6, Mech. 12f

Metallurgy 13w, Ore Dressing, 3, Phys. 5s, Geol. 25s

Metallurgy 15w, Ore-Dressing Lab. 4, Phys. 5s, Geol. 25s

Metallurgy 106w, Base Metals, 4, Met. 105f

Metallurgy 154w, Metallography, 7, Met. 153f

Mining 3w, Tunneling, 5, Min. 5f

Mining Engineering, 5w, Mine Mapping, 6, Min. Eng. 4s

Third Quarter

Mechanics 11s, Mechanics of Materials, 5, Mech. 10w

Mechanics 14s, Mine Plant, 6, Mech. 13w

Metallurgy 16s, Ore-Dressing Lab., 6, Phys. 5s, Geol. 25s

Metallurgy 107s, Precious Metals, 4, Met. 106w

Metallurgy 155s, Metallography, 7, Met. 154w

Mining 4s, Mining Methods, 5, Min. 3w

Mining Engineering 6s, Mine Mapping, 6, Min. Eng. 5w

Metallurgy 21s, Field Work in Metallurgy beginning about May 1, 10 days, satisfactory completion of junior year

Mining 5s, Field Work in Mine Plant and Mining beginning about May 10, 2 weeks, satisfactory completion of junior year

SENIOR YEAR

First Quarter

Electrical Engineering 144.21f, Electric Power, 5, Phys. 5s Geology 111f, Ore Deposits, 3, Geol. 73f, 106w Mechanics 17f, Water Power, 7, Mech. 9f Metallurgy 6f, Ore Testing, 2, Met. 107s Metallurgy 7f, Ore-Testing Lab., 8, Met. 107s Metallurgy 108f, Electrometallurgy, 3, Met. 107s Metallurgy 18f, Thesis, 8

Second Quarter

Geology 80w, Advanced Historical, 3, Geol. 73f Geology 112w, Advanced Economic, 3, Geol. 111f Metallurgy 8w, Special Problems in Ore Testing, 4, Met. 107s Metallurgy 10w, Advanced Metallurgy, 10, Met. 107s Metallurgy 10w, Thesis, 18, Met. 18f

Third Quarter

Geology 113s, Problems in Ore Deposits, 4, Geol. 112w Metallurgy 9s, Special Problems in Ore Testing, 4, Met. 107s

COURSES OF STUDY

Metallurgy 11s, Advanced Metallurgy, 10, Met. 107s Metallurgy 20s, Thesis, 18, Met. 19w

DEPARTMENT OF METALLURGY

This Department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The Jectures treat of all the principal methods now in use. The practical work consists in visits to smelting and refining works which are accessible. The work in metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags is shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their report in detail. This work is offered to students completing the necessary courses in mineralogy and chemistry.

ORE DRESSING

The lectures and recitations in Ore Dressing extend through the junior year, and comprise a detail study of ore dressing and concentrating machinery, together with a study of typical combinations of dressing machines as found in the various mining districts of the United States. In connection with the theoretical work, the ore-dressing laboratory and testing plant of the School is utilized for illustrations, and practical use of ore dressing machinery.

ORE TESTING

The lectures treat of the problems in ore testing such as extraction and losses in roasting, concentration and other milling operations. Both the ore-dressing laboratory and the Mines Experiment Station laboratory are available for working out practical problems. The Mines Experiment Station laboratory is the old Ore-Testing Works modified to aid the mining interests of the State of Minnesota in solving problems connected with concentration and conservation of the iron and manganiferous ores of the state.

The School of Mines laboratories therefore serve both educational and commercial needs.

Educational.—The student becomes familiar with the use of the various types of machines such as crushers, rolls, classifiers, concentration and flotation machinery.

Commercial.—The laboratories are used by the Mines Experiment Station to determine best methods of treatment to produce a commercial product at the lowest cost. Recently additional commercial machinery has been obtained and new appliances are constantly being developed. Commercial samples varying from 500 pounds to car-load lots can be treated by various methods.

FIELD WORK IN METALLURGY

At the end of the junior year students are required to study practical operations at one or more smelters and mills. This work will begin about May 1. The expenses for this trip are estimated at \$225. A deposit of \$50 must be made before starting on the trip to cover board and lodging and necessary side trips. Any balance will be returned at the close of the work in the field.

Each student must keep a notebook containing a record of all observations and necessary detail sketches. These notebooks will be collected at the close of the trip and returned to the student at the reopening of field work at the School. In judging the character of the student's field work equal importance will be given to the completed report and to the original field notes. The Department reserves the right to reject notebooks considered below standard.

Upon termination of the junior field work in Metallurgy and two weeks in Mining and Mine Plant (not later than June 1), the members of the junior class who are candidates for the Degree of Metallurgical Engineer are urged to spend at least six weeks in practical work in one or more of the smelters or mills, for which they may receive wages. The Department will render all possible assistance in locating students in districts of their choice.

Field work will reopen at the School of Mines, Tuesday, September 23, 1919. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in Metallurgy and Mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: Metallurgy, September 23 to 30, inclusive; Mining and Mine Plant, October I to October 14, inclusive.

On October 14, all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 14. These reports shall become the property of the School.

METALLOGRAPHY

Courses in Metallography are offered to seniors who are candidates for the degree of Metallurgical Engineer, students in the Colleges of Science, Literature, and the Arts, Engineering, the School of Chemistry, and the Graduate School.

These courses deal with the microscopic examination of metals, alloys, and ores. The lectures treat of and describe the apparatus used in connection with this subject, the methods of preparing specimens, the physical, chemical, and metallurgical principles involved, and the interpretation of the results of microscopic examination. A collection of specimens, microphotographs, and lantern slides covering wrought iron, low carbon, structural, rail, and tool steels, brasses, bronzes, and other industrial alloys are available for study and comparison. The laboratory course includes the microscopic and pyrometric study of metals, alloys, and ores. The laboratory is equipped with microscopes, electric and portable gas furnaces, and pyrometers of the latest and improved types. A special dark room is available for the preparation of microphotographs

DEPARTMENTAL STATEMENTS

EXPLANATION OF COURSE NUMBERS

The suffixes f, w, or s, indicate the quarter in which a course is offered, e.g., fall, winter, or spring quarters respectively. More than one suffix indicates that a course is offered in each of the corresponding quarters. No suffix indicates that the time of taking a course is to be arranged with the departments concerned.

All undergraduate courses are numbered from I to 100. All courses open to undergraduates and graduates are numbered from 101 to 200. Strictly graduate courses are numbered from 201 up.

CHEMISTRY

Professors Lauder W. Jones, Charles F. Sidener; Associate Professor M. Cannon Sneed; Assistant Professors Frank W. Bliss, Isaac W. Geiger.

No.	Title	Lec. or rec. hrs.	Lab. hrs.	Required of	Prereq. courses
ıf	General Inorg. Chemistry	3	4	All fr.	
2 W	General Inorg. Chemistry	3	4	All fr.	ıf
35	General Inorg. Chemistry	3	4	All fr.	2W
11f	Qualitative Chem. Analysis	3	4 .	All soph.	35
20W	Quantitative Chem. Analysis	I	7	All soph.	rif
23f	Iron and Steel Analysis	I	6	Elective	20W
24f	Mineral and Ore Analysis	I	6	Elective	20W

- If. GENERAL INORGANIC CHEMISTRY. A beginning course in chemistry. A study of the general laws of chemistry and of the non-metals and their compounds.
- 2w. GENERAL INORGANIC CHEMISTRY. A continuation of Course If.
- 35. GENERAL INORGANIC CHEMISTRY. A study of the metals and their compounds. A continuation of Course 2w.
- 11f. QUALITATIVE CHEMICAL ANALYSIS. Laboratory work in systematic qualitative analysis with lectures on solution, ionization, chemical and physical equilibrium, oxidation and reduction, and other subjects pertinent to qualitative analysis. BLISS.
- 20w. QUANTITATIVE CHEMICAL ANALYSIS. An introductory course covering the general principles and methods of quantitative analysis, both gravimetric and volumetric. Typical problems will be assigned and attention given to proper laboratory practice. SIDENER, GEIGER, and Assistants.
- 23f. IRON AND STEEL ANALYSIS. The rapid technical methods for the determination of the common constituents of iron ore. Iron and steel

will be discussed and compared, and typical problems assigned for laboratory practice. SIDENER, GEIGER, and Assistants.

24f. MINERAL AND ORE ANALYSIS. A course in the rapid technical methods for the determination of important constituents in minerals, ores and slags. SIDENER, GEIGER, and Assistants.

DRAWING AND DESCRIPTIVE GEOMETRY

Professor William H. Kirchner; Assistant Professor Robert W. French; Instructors Leon Archibald, Howard D. Myers.*

COURSES

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
III	Engineering Drawing	0	10	All fr.	
12W	Engineering Drawing		8	All fr.	III
I 3S	Engineering Drawing	0	8	All fr.	12W
14f	Descriptive Geometry		0	All soph.	13s, Math. 5s
15W	Drafting	0	4	All soph.	14f

- 11f. ENGINEERING DRAWING. Sketching, lettering, representation, elements of drafting, details of machines and structures, interpretation of working drawings. KIRCHNER, FRENCH, ARCHIBALD.
- 12W. ENGINEERING DRAWING. Continuation of Course 11f. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. KIRCHNER, ARCHIBALD.
- 13s. ENGINEERING DRAWING. Continuation of Course 12w. The elements of general drafting. Maps and sketches. Brush and pen conventions. KIRCHNER, ARCHIBALD.
- 14f. DESCRIPTIVE GEOMETRY. Projection; central and special cases, principles and applications, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems. KIRCHNER.
- 15w. DRAFTING. Graphics, machine drafting, and structural drafting. Instruction in drafting room methods. FRENCH, ARCHIBALD.

ELECTRICAL ENGINEERING

Professor George D. SHEPARDSON; Assistant Professor WILLIAM T. RYAN.

COURSES

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
144.21f	Electric Power	2	3	Sr. E.M.	Physics 58

* On leave of absence, 1919-1920.

144.21f. ELECTRIC POWER. Elementary principles of continuous currents. Continuous current generators and motors. Elementary principles of alternating currents. Alternating current generators, transformers, and motors. Measurement of power. Elementary principles of transmission and distribution. Lectures, recitation, laboratory work. RYAN.

EXPERIMENTAL ENGINEERING

Professors John R. Allen, William E. Brooke; Assistant Professors William F. Holman, Frank B. Rowley, Charles F. Shoop; Instructor Amos F. Moyer.

COURSES

No.	Title	Lec. or rec. hrs.		Required of	Prereq. courses
M.E. 83.4f M.&M. 43.2w	Elementary Laboratory. Materials Testing Lab.		4	Jr. E.M. Jr. E.M.	With Mech. 12f With Mech. 10w
M.E. 184.1w	Experimental Laborate	ory	4	Sr. E.M.	Exp. Eng, M.E. 83.4f

- M.E.83.4f. ELEMENTARY LABORATORY. Calibrations of thermometer, gages, weirs, nozzle orifices, and meters. Efficiency of machines, friction of belting, friction tests, burning point, chill point, viscosity and specific gravity of oils. Tests of water motor, rams, and pulsometers.
- M.&M.43.2w. MATERIALS TESTING LABORATORY. Investigation of physical properties of metals and engineering materials: wood, cement, ropes, etc., supplemented by lectures on materials of construction and methods of testing. BROOKE, HOLMAN.
- M.E.184.1W. EXPERIMENTAL LABORATORY. Indicator practice, valve setting, separating and throttling calorimeter, tests of steam engine, gas engine, pump, air compressor, turbine, boiler, and power plant. Row-LEY, SHOOP.

GEOLOGY AND MINERALOGY

Professors William H. Emmons, Clinton R. Stauffer; Associate Professor Frank F. Grout; Assistant Professors A. Walfred Johnston, Terence T. Quirke; Instructor Thomas M. Broderick.

		Lect	. or	Lab.		
No.	Title	rec.	hrs.	hrs.	Required of	Prereq. courses
IW	General Geology		3		All soph.	105f
28	General Geology		3	4	All soph.	105f
11f	Paleontology		3		Sr.E.M.(Geol.)	28
I2W	Paleontology		3		Sr.E.M.(Geol.)	25
135	Paleontology		3		Sr.E.M.(Geol.)	2S
18w	Elem. of Paleontology		3		Elective	
195	Elem. of Paleontology				Elective	

DEPARTMENTAL STATEMENTS

		Lect. or	Lab.		
No.	Title	rec. hrs	. hrs.	Required of	Prereq. courses
23f	Elem. of Mineralogy	4	4	All fr.	
24W	Elem. of Mineralogy	2	2	All fr.	
258	Elem. of Mineralogy	4	4	All fr.	
61f	Physical Mineralogy		4	Elective	255
65f	Crystallography	2	4	Elective	25S
73f	Econ. Geology	3		All jr.	28, 105f
8ow	Advanced Hist. Geology			Sr.E.M.	73f
85	Summer Field Work		2 wks.	All soph.	28
rosf	Elem. of Rock Study		4	All soph.	255
тобм	Petrography		4	All soph.	105f
IIIf	Ore Deposits		• •	Sr.E.M.&E.M. (Geol.	
II2W	Advanced Econ. Geology			Sr.E.M.&E.M. (Geol.	·
1135	Problems in Ore Deposits		4	Sr.E.M.&E.M. (Geol.	·
124W	Struct. & Metamorph. Geol.		• •	Jr.E.M. (Geol.)	73f, 105f
1258	Struct. & Metamorph. Geol	3		Jr.E.M. (Geol.)	73f, 105f
131f	Advanced Petrology		3	Jr.E.M.(Geol.)	28, 106W
132W	Advanced Petrology		3	Jr.E.M. (Geol.)	25, 106W
133S .	Advanced Petrology		3	Jr.E.M. (Geol.)	25, 106W
137W	Testing Econ. Minerals		4	Sr.E.M.(Geol.)	73f
140W	Applied Petrography	, I	4	Sr.E.M.(Geol.)	111f, 138
1415	Applied Petrography	I	4	Sr.E.M.(Geol.)	111f, 138
144W	Construction & Interpretation				
	Geologic Maps		6	Jr.E.M. (Geol.)	73f
1458	Construction & Interpretation	n of			
	Geologic Maps		6	Jr.E.M. (Geol.)	73f
1505	Field Geology			Jr.E.M. (Geol.)	1258
151f	Advanced General Geology	3		Jr.E.M.(Geol.)	73f
152W	Advanced General Geology.	3		Jr.E.M. (Geol.)	73f
1538	Advanced General Geology.	3		Jr.E.M.(Geol.)	73f
166w	Mineralography		6	Sr.E.M.(Geol.)	IIIf
1675	Mineralography		6	Sr.E.M.(Geol.)	TIIf
246	Pre-Cambrian Geology		3	Elective	1255
247	Geol. & Exploration of Lak	ce			
	Superior region	3	÷	Elective	1255

- IW, 25. GENERAL GEOLOGY. A synoptical treatment of materials of the earth, and of geologic processes. Physiographic, dynamic, structural, and historical geology. JOHNSTON.
- 11f, 12w, 13s. PALEONTOLOGY. A study of fossil forms with special reference to those of geologic importance; faunas and their correlation. STAUFFER.
- 18w, 19s. ELEMENTS OF PALEONTOLOGY. An introduction to the study of fossil organisms. Lectures supplemented by field excursions. STAUFFER.
- 23f, 24w, 25s. ELEMENTS OF MINERALOGY. The crystal systems; morphological, physical, chemical characters of minerals; occurrence, genesis, and uses of minerals; classifications and description of common minerals; rock minerals, and common rocks. Determinative work in the laboratory, blowpipe analysis, sight identification. BRODERICK, GROUT.

- 61f. PHYSICAL MINERALOGY. The form, optical and physical properties of minerals; expansion and conductivity; pyro-electricity; hardness, percussion, and etch figures; cleavage and gliding planes. BRODERICK.
- 65f. CRYSTALLOGRAPHY. Projection and geometric relations of crystal planes; crystal nomenclature; the relation of special properties to morphology. A study of crystal models, crystal drawing, identification of minerals from crystal measurements, and mathematical calculation. BRODERICK.
- 73f. ECONOMIC GEOLOGY. Study of non-metallic minerals of economic value, and discussions of geologic guides to prospecting for these deposits. QUIRKE.
- 80w. ADVANCED HISTORICAL GEOLOGY. The sequence of events in geologic history, of interest to the advanced student in mining. STAUFFER.
- 85su. FIELD WORK. About two weeks in June are spent in geologic mapping of selected areas in the iron district of Minnesota. Involves preparation of geologic maps and written reports. JOHNSTON.
- 105f. ELEMENTS OF ROCK STUDY. The occurrence and genesis of igneous, sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and alteration. The classification and methods of identification and description of rocks. GROUT, BRODERICK.
- 106w. PETROGRAPHY. The identification and study of minerals and rocks by optical methods; the study of igneous rocks, crystalline schists, and metamorphic rocks. The origin and classification of rocks. GROUT, BRODERICK.
- IIIf. ORE DEPOSITS. The nature, distribution, and genesis of ore deposits of the United States; relations of ore deposits to geologic structure; the deformation and superficial alteration of ore deposits. EMMONS.
- 112W. ADVANCED ECONOMIC GEOLOGY. First part treats deposits of metals, giving special attention to those outside of the United States. Second half treats the nature, origin, and distribution of petroleum and discusses the various oil fields of the world. EMMONS.
- 1135. PROBLEMS IN ORE DEPOSITS. Field excursions, map work, lectures on field and laboratory methods. EMMONS.
- 124W, 125S. STRUCTURAL AND METAMORPHIC GEOLOGY. The conditions, processes, and results of metamorphism; structural features resulting from deformation under varying conditions of load. JOHNSTON.
- 131f, 132w, 133s. Advanced Petrology. Advanced optical methods. Criteria for rapid identification of minerals and rocks. The uses of

schedules and tables. Standard rock types. Regional and genetic studies. Petrographic reports. GROUT.

- 137w. TESTING ECONOMIC MINERALS. Methods of determining quality of mineral deposits, described and illustrated by laboratory tests of coal, oil, building stone, and metallic ores. GROUT.
- 140w, 1418. APPLIED PETROGRAPHY. Determination of ores and gangue minerals. Microscopic studies of paragenesis of ores and other mineral associations. Practical problems in mining and geology settled by microscopic and optical examinations. GROUT.
- 144w, 145s. CONSTRUCTION AND INTERPRETATION OF GEOLOGIC MAPS. Methods of geologic examination; problems in construction and interpretation of geologic maps and sections. QUIRKE.
- 1505. FIELD GEOLOGY. Detailed, systematic work conforming with standards of official surveys. Preparation of geological maps, structure sections, reports; paragenesis of ores and their relations to geologic structures. Field for 1920, Black Hills, South Dakota. Reports to be written week before college opens in fall. EMMONS, JOHNSTON.
- 151f, 152w, 153s. Advanced General Geology. Geologic processes and their results; development of the North American continent. STAUFFER.
- 166w, 167s. MINERALOGRAPHY. Methods of studying opaque minerals and the application of the methods to problems in ore genesis and history. BRODERICK.
- 246. PRE-CAMBRIAN GEOLOGY. The problems of pre-Cambrian correlation and structure; the pre-Cambrian stratigraphy of North America. Given in alternate years. Not offered in 1919-1920. JOHNSTON.
- 247. GEOLOGY AND EXPLORATION OF LAKE SUPERIOR REGION. The geology of the Lake Superior iron districts. Methods used in the exploration of iron ore; interpretation of drill cores; cartographic expression of drill data; models of drilled areas. Principles of magnetic surveying. JOHNSTON.

GERMAN

Professor Carl Schlenker; Assistant Professors Oscar C. Burkhard, James Davies, Alfred Koenig, Samuel Kroesch, Walter R. Myers.

No.	Title	Rec. hrs. Required of	Prereq. courses
rf	Beginning	5 Jr. E.M. (Geol.)	
2W	Beginning and Intermediate	5 Jr. E.M. (Geol.)	If
35	Beginning Advanced	5 Elective	2W
21f	Scientific Intermediate	3 Elective	1f-3s or equiv.
22W	Scientific Intermediate	3 Elective	21f
235	Scientific Intermediate	3 Elective	22W

- If. BEGINNING. Double course. Pronunciation, grammar, conversation, and composition; selected readings in easy prose and verse.
- 2w. BEGINNING AND INTERMEDIATE. Double course. Continuation of Course If.
- 35. BEGINNING ADVANCED. Double course. Selected texts in modern narrative and descriptive prose; selected lyrics and ballads; a drama of Lessing, Goethe, or Schiller. Assigned readings of texts outside of class.
- 21f, 22w, 23s. SCIENTIFIC INTERMEDIATE. This course aims to give students a reading knowledge of German for use in scientific studies.

METALLURGY

Professors William R. Appleby, Peter Christianson, Levi B. Pease; Associate Professor Samuel L. Hoyt; Instructors Elwyn L. Smith, Ralph L. Dowdell.

]	Lect. Lab.		
No.	Title	hrs. hrs.	Required of	Prerequisite courses
IW	Assaying	4	All fr.	Chem. 1f, Geol. 23f
2W	Assaying Lab	8	All fr.	Chem. 1f, Geol. 23f
3f	General Metallurgy	3	Soph.E.M.&Met.E.	1w, 2w, Chem. 3s
4W	Metallurgy of Pig Iron	3	Soph.E.M.&Met.E.	3f
55	Met. Wrought Iron and			
	Steel	3	Soph.E.M.&Met.E.	4W
6f	Ore Testing	2	Sr.E.M.&Met.E.	1075
7f	Ore-Testing Lab	8	Sr.E.M.&Met.E.	1075
8w	Spec. Prob. in Ore Test.	•• 4	Sr.E.M.&Met.E.	1075
9s .	Spec. Prob. in Ore Test.	8	Sr.E.M.&Met.E.	1075
IOW	Advanced Metallurgy	4 6	Sr.Met.E.	1075
IIS	Advanced Metallurgy	4 6	Sr.Met.E.	1075
12f	Ore Dressing	3	Jr.E.M.&Met.E.	Phys. 5s, Geol. 25s
1 3 W	Ore Dressing	3	Jr.E.M.&Met.E.	Phys. 5s, Geol. 25s
14f	Ore-Dressing Lab	4	Jr.Met.E.	Phys. 5s, Geol. 25s
15W	Ore-Dressing Lab	•• 4	Jr.Met.E.	Phys. 5s, Geol. 25s
16s	Ore-Dressing Lab	6	Jr.Met.E.	Phys. 5s, Geol. 25s
175	Ore-Dressing Lab	6	Jr.E.M.	Phqs. 5s, Geol. 25s
18f	Thesis in Metallurgy	8	Sr.Met.E.	Satisfactory comple-
				tion of jr. year
19W	Thesis in Metallurgy	18	Sr.Met.E.	18f
205	Thesis & Specifications	18	Sr.Met.E.	19W
215	Field Work in Met	• • **	Jr.Met.E.	Same as 18f
22W	Mechanical Technology	3	Mech. Engineers	
105f	Met. of Base Metals	4 • •	Jr.E.M.&Met.E.	3f
106 W	Met. of Base Metals	4 • •	Jr.E.M.&Met.E.	105f
1075	Met. of Precious Metals.	4 ••	Jr.E.M.&Met.E.	тобw
108f	Electrometallurgy	3 • •	Sr.Met.E.	1075
153f	Mphy., Long Course	3 4	Jr.Met.E.	Chem. 20w, Phys. 5s
154W	Mphy., Long Course	3 4	Jr.Met.E.	153f
1555	Mphy., Long Course	3/ 4	Jr.Met.E.	154W

	Lect	. Lab.		
No.	Title hrs.	hrs.	Required of	Prerequisite courses
156w	Mphy. for Engineers 3	3 4	Elective	Soph. Shop Practice
1578	Adv. Mphy. for Engineers	3 4	Elective	156W
160w	Mphy. for Chemists	2	Elective	Chem. 20w
161 f	Dental Metallography 3	3	Elective	
163f	Adv. Metallography To	be ar.	Elective	1555
164w	Adv. Metallography To	be ar.	Elective	
1658	Adv. Metallography To	be ar.	Elective	
201 f	Adv. Mphy., Gr. students. To	be ar.	Elective	
202W	Adv. Mphy., Gr. students. To	be ar.	Elective	
2035	Adv. Mphy., Gr. students. To	be ar.	Elective	
	** Ten days.			

- IW. ASSAYING. The determination of values of ores, metallurgical products by the fire method. Lectures and recitations. APPLEBY, CHRIS-TIANSON.
- 2w. Assay LABORATORY. Practical determination of gold, silver, lead, and tin by the fire method. CHRISTIANSON, PEASE, SMITH.
- 3f. GENERAL METALLURGY. Combustion, fuels, refractory materials, furnaces and fluxes. Lectures and recitations. CHRISTIANSON.
- 4w. METALLURGY OF PIG IRON. General principles of iron blast furnace practice. Construction of furnace, handling of stock, and products, principles of regulation. Lectures and recitations. CHRISTIANSON.
- 55. METALLURGY OF WROUGHT IRON AND STEEL. General principles involved in the production of wrought iron and steel. Lectures and recitations. CHRISTIANSON.
- 6f. ORE TESTING. General principles involved in determining the best method of extraction, including amalgamation, concentration, cyanidation, roasting, etc. Lectures and recitations. CHRISTIANSON.
- 7f. ORE-TESTING LABORATORY. Practical determination of extraction and distribution of values in mill and metallurgical products. Methods of calculation. CHRISTIANSON and Assistants.
- 8w. SPECIAL PROBLEMS IN ORE TESTING. Continuation of Course 7f. Practical determinations for regulating metallurgical operations. PEASE.
- 95. SPECIAL PROBLEMS IN ORE TESTING. Continuation of Course 8w. PEASE.
- **IOW.** ADVANCED METALLURGY. Pyrometry, calorimetry, and metallurgical calculations to determine heat balance and heat distribution. Lectures and laboratory work. CHRISTIANSON.
- 115. ADVANCED METALLURGY. Design of furnaces, conferences and laboratory work. CHRISTIANSON.
- 12f. ORE DRESSING. Crushing, sizing, classification, and concentration of ores. Lectures and recitations. SMITH.

- 13w. ORE DRESSING. Continuation of Course 12f. SMITH.
- 14f. ORE-DRESSING LABORATORY. Practical examination of ores and the use of ore-dressing machinery. SMITH.
- 15W. PRACTICAL PROBLEMS IN ORE DRESSING. SMITH.
- 16s. ORE-DRESSING LABORATORY. Continuation of Course 15w. SMITH.
- 175. ORE-DRESSING LABORATORY. Short course in the laboratory use of ore-dressing machinery. SMITH.
- 18f. THESIS IN METALLURGY. Conferences to select suitable problem together with preliminary laboratory work on problem selected. CHRIS-TIANSON.
- 19w. Continuation of Course 18f. CHRISTIANSON.
- 205. Completion of thesis including specifications covering installation of a plant. CHRISTIANSON.
- 215. FIELD WORK IN METALLURGY. Study of metallurgical operations at smelters and mills. Detail reports are required covering plants visited. CHRISTIANSON, PEASE.
- 22w. MECHANICAL TECHNOLOGY. Lectures on mining, metallurgy, and treatment of metals used in construction. BAINS, CHRISTIANSON, PEASE, HOYT.
- 105f. METALLURGY OF THE BASE METALS. Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining. Lectures and recitations. PEASE.
- 106w. METALLURGY OF BASE METALS. Continuation of Course 105f. PEASE.
- 1075. METALLURGY OF THE PRECIOUS METALS. Principles involved and methods used in the extraction of gold, silver, and other precious metals. Lectures and recitations. PEASE.
- 108f. ELECTROMETALLURGY. Application of electricity to production of heat for smelting ores and refining metals. Costs of fuel and electricity for heating, relative efficiencies of electric and fuel furnaces. Construction of high temperature furnaces and commercial plants. CHRISTIANSON.
- 153f, 154w, 155s. METALLOGRAPHY. (Long course for Metallurgical Engineers.) Theory of metallic alloys. Metallographic technique. Properties of metals and alloys. Metallography of iron and steel and commercial alloys. Technical metallography. Hovr.

- 156w. METALLOGRAPHY FOR ENGINEERS. Metallurgy of iron and steel. Microscopic and thermal analysis of steel and cast iron; heat and mechanical treatment. Laboratory work. Hoyr.
- 1575. ADVANCED METALLOGRAPHY FOR ENGINEERS. Continuation of 156w. Metallography applied to engineering practice; commercial heat treatment; uses and properties of alloy steels. Engineering specifications involving the use of metals and alloys. Laboratory work. HOYT.
- 16ow. METALLOGRAPHY FOR CHEMICAL STUDENTS. The preparation of metallic alloys; their microscopical and thermal analysis. Steel and other commercial alloys with particular reference to chemical metallurgy. Corrosion of steel and non-ferrous alloys. Metallography applied to analytical chemistry. Hoyr.
- 161f. DENTAL METALLOGRAPHY. Study of the dental alloys from the standpoint of metallography. Hoyr.
- 163f, 164w, 165s. ADVANCED METALLOGRAPHY. Technical and scientific research. The study of steel rails, automobile and locomotive parts, tool steels, etc. Special problems in metallography with outside reading. Seminar work on the recent advances in metallography. Hovr.
- 201f, 202w, 203s. Advanced Metallography for Graduate Students. Repetition and extension of Courses 163f, 164w, and 165s. Hoyt.

MINE PLANT AND MECHANICS

Professor Elting H. Comstock; Assistant Professor Anders J. Carlson; Instructor James C. Sanderson.

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
If	Algebra and Solid Geometry	6		B fr.	
2f	Algebra	6		A fr.	
35	Algebra	4	1.	B fr.	rf
4W	Trigonometry	6		All fr.	
55	Analytical Geometry	6		All fr.	4W
6f	Calculus	4		All soph.	58
7W	Calculus	3		All soph.	6f
8s	Calculus	6		All soph.	7W
9f	Mechanics	5		Jr.E.M.&Met.H	E. 8s
IOW	Mechanics of Materials	5		Jr.E.M.&Met.H	E, of
IIS	Mechanics of Materials	5		Jr.E.M.&Met.H	E. IOW
12f	Mine Plant	6		Jr.E.M.&Met.E	C. 8s
1 3 W	Mine Plant	6		Jr.E.M.&Met.H	E. 12f
148	Mine Plant	6		Jr.E.M.&Met.H	E. 13W
15W	Metallurgical Plant	2		Jr.Met.E.	12f
16s	Metallurgical Plant	2		Jr.Met.E.	15W
17f	Hydraulics and Water-Power	5	2	Sr.E.M.&Met.1	E. 9f
18f	Engineering Construction		8	Sr.E.M.	IIS
19W	Mine Plant Design		9	Sr.E.M.	r8f
205	Mine Plant Design		12	Sr.E.M.	19W

- If. ALGEBRA AND SOLID GEOMETRY. Equations, involution and evolution, theory of exponents, surds, quadratic equation, theory of logarithms. determinants. Demonstrations of most important theorems of solid geometry. Volumes, approximate volumes, prismoidal formula, etc. SANDERSON.
- 2f. ALGEBRA. Functions, functional notation, factor and remainder theorems, factors and values of functions, development of functions, progressions, series, theory of equations, permutations and combinations, theory of logarithms, determinants. COMSTOCK, SANDERSON.
- 35. ALGEBRA, Continuation of If. Functions, functional notation, factor and remainder theorems, factors and values of functions, development of functions, progressions, series, theory of equations, permutations and combinations. SANDERSON.
- 4w. TRIGONOMETRY. Trigonometric ratios, right triangles, definitions of trigonometric functions, analytic relations, trigonometric equations, etc., solution of spherical triangles. COMSTOCK, SANDERSON.
- 55. ANALYTICAL GEOMETRY. Systems of coördinates, loci, equations, properties of straight line, transformation of coördinates, equations and properties of conics, equations of second degree, higher plane curves, space coördinates, point, plane, quadric surfaces, etc., empirical equations, graphic algebra. SANDERSON.
- 6f, 7w, 8s. CALCULUS. Differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, expansion of functions, indeterminate forms, partial derivatives, change of variable, elementary integration, undetermined coefficients, rationalization, formulas of reduction, some differential equations of mechanics. SANDERSON.
- 9f. MECHANICS. Composition and resolution of forces, laws of equilibrium, practical applications, rectilinear motion, circular motion, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy. CARLSON.
- IOW, IIS. MECHANICS OF MATERIALS. Mechanical and elastic properties of materials of construction; beams, columns, shafts, hollow cylinders and spheres, rollers, plates; theory of internal stress; reinforced concrete. CARLSON.
- 12f, 13w, 14s. MINE PLANT. Discussion of the machinery and appurtenances employed in the equipment of mines. Air compression, rock drills, mechanical features of hoisting, pumping, ventilation, underground transportation. Electricity applied to mining. COMSTOCK.
- 15w, 16s. METALLURGICAL PLANT. Power, air, and water supply for metallurgical plants. Comstock.

- 17f. HYDRAULIUS AND WATER-POWER. Laws of the equilibrium, pressure and flow of liquids, estimation of power to be developed at a power site, dams and appendages, theory of water wheels and turbines, speed control, power-house equipment, transmission. CARLSON.
- 18f. ENGINEERING CONSTRUCTION. Theory of structures, loading, analytic and graphic resolution of stresses in framed structures, stresses in mining structures, design of mining structures. CARLSON.
- 19w, 20s. MINE PLANT DESIGN. A study of power possibilities, costs, etc., and designs of a power plant, surface equipment, and structures for a mine. Comstock.

MINING

Associate Professor THOMAS M. BAINS, Jr.

		Lect. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
IS	Introductory Mining	4		All soph.	
2f	Exploration	5		All jr.	IS
3W	Tunneling	5		All jr.	2f
4 S	Mining Methods	5	• •	All jr.	3W
58	Practical Mining		2 wks.	All jr.	Satisfactory
					completion
					of jr. yr.
6f	First Aid	*	*	All jr:	• •
51f	Mine Rescue		*	All sr.E.M.&E.M. (Geol.)	
52f	Mining Reports	5		All sr.E.M.&E.M. (Geol.)	4S
53W	Mining Problems	5		All sr.E.M.&E.M. (Geol.)	52f
545	Mining Law	5		All sr.E.M.&E.M. (Geol.)	53W
55f	Thesis		2	All sr.E.M.	45
56w	Thesis		I 2	All sr.E.M.	55f
575	Thesis		12	All sr.E.M.	56w
	* 15 hours (1 week).				

- 15. INTRODUCTORY MINING. Introductory mining course, preparatory to sophomore field trip. BAINS.
- 2f. EXPLORATION. Occurrence of ore-bodies, prospecting, exploration, boring and surface excavation. BAINS.
- 3w. TUNNELING. Explosives, drilling, tunneling, drifting, shaft sinking and raising. BAINS.
- 45. MINING METHODS. Underground mining methods and support of underground excavations. BAINS.
- 55. PRACTICAL MINING. Study of mining operations. Mine plant and mining work in one or more mining camps. COMSTOCK, BAINS.
- 6f. FIRST AID. Course in first aid to the injured, given by the staff of the U. S. Bureau of Mines car.

- 51f. MINE RESCUE. Course in mine rescue, given by the staff of the U. S. Bureau of Mines car.
- 52f. MINING REPORTS. Preparation of one or more mining reports, from data supplied by the Mining Department; open-pit work, quarrying, placer mining, hydraulic mining and dredging. BAINS.
- 53w. MINING PROBLEMS. Coal mining methods, mine drainage, mine ventilation, mine transportation, mine sanitation, mine hygiene, cost accounting, and mine examination. BAINS.
- 545. MINING LAW. Course in mining law, mine management and economics of mining. BAINS.
- 55f. THESIS. Preparatory work on the mining thesis. BAINS.
- 56w. THESIS. Preparation of an original thesis on some mining project, covering the exploration and development of a mining property. BAINS.
- 575. THESIS. Completion of thesis project. BAINS.

MINING ENGINEERING

Associate Professor Edwin M. LAMBERT.

				Lab.		
No.	Title	rec.	hrs.	hrs.	Required of	Prereq. courses
rf	Mine Surveying		3	• •	All soph.	Math. 4w
2W	Mine Surveying		3		All soph.	ıf
35	Mine Surveying		3	4	All soph.	2W
48	Field Work			7 wks.	All soph.	38
5 W	Mine Mapping			б	All jr.	45
6s	Mine Mapping	•••	• •	6	All jr.	5W

- If-2w-3s. MINE SURVEYING. Theory and problems in mine surveying including land subdivision, stadia measurements, triangulation, railroad curves and cross sections, computation of areas by coördinates; differential leveling, topographic map reading, solar observations, shaft plumbing, underground traversing and leveling. LAMBERT.
- 45. FIELD WORK. Practice in general plane surveying during the month of May. Practice in underground surveying during the first three weeks of June. This work is given on the iron ranges of Minnesota. LAMBERT, CARLSON.
- 5w-6s. MINE MAPPING. Mine mapping in accordance with prevalent practice in western mining districts. Ore and stripping estimates and mine maps based on Mesabi Range practice. CARLSON.

PHYSICS

Professors HENRY A. ERIKSON, ANTHONY ZELENY; Professorial Lecturer LOUALLEN F. MILLER.

COURSES

		Lec.	or	Lab.		
No.	Title	rec.	hrs.	hrs.	Required of	Prereq. courses
ıf	General Physics		3		All soph.	Math. 58
3W	General Physics		3		All soph.	ıf
58	General Physics		3		All soph.	3W
2f	General Lab. Practice			2	All soph.	With 1f
4 W	General Lab. Practice			2	All soph.	With 3w
6s	General Lab. Practice	• •	•••	2	All soph.	With 5s

- If. GENERAL PHYSICS. Mechanics, heat, and sound. Treatment of such fundamental principles and problems as will best serve mining or metallurgical engineers in practical work, and develop investigative insight necessary for the solution of mining and metallurgical problems. MILLER.
- 3W, 5S. GENERAL PHYSICS. Electricity, magnetism, and light, as stated under Course If. Theory illustrated by practical applications. Enough of light given to understand optical instruments of mining and metallurgy, and comprehend optical principles of crystal structure in crystallography. MILLER.
- 2f. GENERAL LABORATORY PRACTICE. Measurements in mechanics and heat. Intended to develop accuracy, method, system, and experimental control. MILLER.
- 4w, 6s. GENERAL LABORATORY PRACTICE. Measurements in electricity, magnetism, and light. The experiments in light being largely supplementary to the purposes stated in Courses 3w and 5s. MILLER.

ROMANCE LANGUAGES

Professors Everett Ward Olmsted, Irville C. Le Compte, Colbert Searles; Assistant Professors Francis B. Barton, Jules T. Frelin, Ruth S. Phelps.

	00	CRODDO		
No.	Title	Rec. hrs.	Required of	Prereq. courses
4f	Beginning French	5	Jr. E.M. (Geol.)	
5 W	Beginning French	5	Jr. E.M. (Geol.)	· 4f
6s	Intermediate French	5	Elective	5W
IOT	Survey French Lit	3	Elective	6s
IIW	Survey French Lit	3	Elective	ıof
125	Survey French Lit	3	Elective	IIW
34f	Beginning Spanish	5	Jr. E.M. (Geol.)	
35W	Beginning Spanish	5	Jr. E.M. (Geol.)	34f
36s	Intermediate Spanish	5	Elective	35W
40f	Spanish Literature	3	Elective	36s
4 I W	Spanish Literature	3	Elective	40f
425	Spanish Literature	3	Elective	4IW

- 4f, 5w. BEGINNING FRENCH. Stress on accurate pronunciation, reading, reading vocabulary, and the essentials of grammar. Daily oral and written exercises (dictation and reproduction in French).
- 6s. INTERMEDIATE FRENCH. French grammar, composition, and reading; increased use of French in the classroom. Selections from modern prose and poetry.
- 10f, 11w, 12s. GENERAL SURVEY OF FRENCH LITERATURE. Lectures, recitations, and assigned readings. Designed to cover the whole period in historical outline. Selections from representative authors.
- 34f, 35w. BEGINNING SPANISH. Pronunciation, grammar, oral exercises and translation.
- 36s. INTERMEDIATE SPANISH. Review of grammar, composition, conversation and reading.
- 40f, 41w, 42s. SPANISH LITERATURE. Discussions based upon texts and collateral reading.

STUDENTS

GRADUATE SPECIAL (Ingersoll, Guy E., Hibbing

SENIORS 8

Barr, J. Carroll, Jr., Pittsburgh, Pa. Berg, Locksley D., Minneapolis Frellsen, Sidney A., Minneapolis Goldberg, Bert, St. Paul

Arnold, Lewis E., Minneapolis Davies, Herman F., Minneapolis Donaghue, Abner J., Minneapolis Johnson, Axel L., Benson Kersten, Erwin H. W., Minneapolis Mark, Israel C., Minneapolis

Butler, Roy G., St. Paul Carlson, Edwin N., Brainerd Chadbourn, Charles H., Minneapolis Dawson, Loren W., Minneapolis Hamernik, Frank J., Menominee, Mich. Hope, Lawrence I., Minneapolis Johnsen, Trygve, St. Paul Johnston, Kenneth A., St. Paul Zanger, Eu

Adams, E. Maurice, Moorhead Alger, Leon J., Staples Anderson, Oscar B., Crosby Apuli, Waino E., Mountain Iron Barker, Clifton T., Excelsior Borgeson, Milton B., Hibbing Branley, Bernard L., Melrose Butler, Robert, St. Paul Casson, Robert D., Duluth DeVaney, Fred D., Minneapolis Echebarria, Luis de Uribe, Bilbao, Spain Friedl, Arthur J., St. Paul Goldman, Theodore I., Minneapolis Gross, Forrest C., Duluth Gustafson, Arnold A., Duluth Hansen, Mayer G., Minneapolis Heathcote, William, Duluth Henkel, Howard L., Minneapolis Hoffman, Louis, Minneapolis Kilp, Raymond G., Minneapolis Knowlton, Ralph S., Duluth

Goldberg, Samuel B., St. Paul Hosted, Joseph O., Duluth Mellem, Walter R., St. Paul Pan, Wen Ping, Shanghai, China JUNIORS-12 Munson, Arthur M., St. Paul Olson, Paul W., Warren Peterson, Clarence D., Minneapolis Powers, Sheldon M., Minneapolis Raiter, Clifford R., Minneapolis Wheeler, James D., Minneapolis SOPHOMORES-17 Nicholls, William J., Jr., Ely Patten, Richard C., Minneapolis Rydlun, Edwyn G., Minneapolis Sebenius, Carl H., Duluth Strange, Howard E., Duluth Walz, Clarence M., Gladstone, Mich. West, Herbert S., Minneapolis Yaeger, William H., Valley City, N. D. Zanger, Eugene, Minneapolis FRESHMEN-43 Le Roy, James K., Minneapolis Lin, Sze Chen, Peking, China Loulan, William F., Kinney Lovering, Thomas S., St. Paul McKenzie, Frederick R., Adrian Mannerberg, Walter F., Minneapolis Merrill, John W., St. Paul Moga, Gregory, St. Paul Olson, Arthur W., Minneapolis Plut, Frank J., Crosby Ridgway, Robert H., Mandan, N. D. Scheid, Adolph J., Jr., Milwaukee, Wis. Sebenius, William H. M., Duluth Siverling, Milo T., Albert Lea Siverson, Garfield C., Minneapolis Smith, Lyle W., Minneapolis Swart, John A., Duluth Tappen, William H., Hibbing Thellin, Herbert E., Crosby Webster, W. H., Minneapolis Williams, Barton, Olean, N. Y. Wilson, J. Byron, Minneapolis FIRST YEAR-23 Norin, Adolph L., Minneapolis Rea, Vernon A., Oshkosh, Wis. Schroeder, William A., St. Paul Schultz, Dewey, Kinney Searles, John N., Mazeppa

Thompson, Harry S., St. Paul

Watts, Clement J., Crosby

Welu, Barney J., Milroy

Wilcox, Fred H., Minneapolis

Wilson, Lawrence A., Minneapolis

Wolfe, Maurice, Hibbing

Wright, Donald R., Luverne

Allen, Arthur W., Minneapolis Allen, Lauren L., Minneapolis Blair, John V., Winona Edwards, Roger D., Albert Lea Fay, Charles M., Duluth Finch, Frank C., Lemmon, S. D. Grover, Willard A., Winona Gudmundson, Staney L., Minneota Hall, Howard C., Minneapolis Liddicoat, Roy H., Biwabik Middleton, John L., Marshall

•

.

The Bulletin of the University of Minnesota

66 m 2 mi 1920/21

> The School of Mines Announcement for the Year 1920-1921

Vol. XXIII No. 14 May 8 1920

Entered at the post-office in Minneapolis as second-class matter Minneapolis, Minnesota

Accepted for mailing at special rate of postage provided for in section 1103, Act of October 3, 1917, authorized July 12, 1918

1920 1921				
JULY	JANUARY	JULY .		
Su Mo Tu W Th Fr Sa	Su Mo Tu W Th Fr Sa	Su Mo Tu W Th Fr Sa		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
AUGUST	FEBRUARY	AUGUST		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
SEPTEMBER	MARCH	SEPTEMBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
OCTOBER	APRIL	OCTOBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31		
NOVEMBER	MAY	NOVEMBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
DECEMBER	JUNE	DECEMBER		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

CALENDAR

1920-1921

1920								
September	17	Frida	1 .	Sol	phomores, School of Mines, report			
September	1/	1 1 1 1 1 1 1 1	2		or military drill 8:30 a.m.			
September	18	Satur	day		ement of fees closes, except for new			
September	10	Satur	uay		tudents			
C		Turner	1					
September	21	Tueso	lay		niors and seniors, School of Mines,			
C	0				eport for completion of field work			
September	24-28	Week	:		aminations for removal of conditions			
					nd entrance examinations; see below			
September	27-28				gistration, days			
September	29		lesday		1 quarter begins			
October	21	Thurs			ate meeting, 4:00 p.m.			
November	2	Tuesc		Ele	ction Day; a holiday			
November	25	Thurs	sday	Th	Thanksgiving Day; a holiday			
December	ıq	Thurs	sday	Sen	ate meeting, 4:00 p.m.			
December	22	Wedn	lesday		ristmas vacation begins 5:20 p.m.			
					· · ·			
1921								
January	4	Tuesd	lav	Chi	ristmas vacation ends 8:30 a.m.			
January	4	Tuesd			nter quarter begins 8:30 a.m.			
February	12	Satur			coln's Birthday; a holiday			
February	17	Thurs			Senate meeting, 4:00 p.m.			
February	22	Tuesd			Washington's Birthday; a holiday			
March	24	Thurs			Winter quarter ends 5:20 p.m.			
March	30	Wedn			Spring quarter begins 8:30 a.m.			
May	2	Mond			ld work for sophomores and juniors			
Way	2	MONG	.ay		School of Mines begins			
More	TO	Thur	dow		0			
May	19	Thurs			ate meeting, 4:00 p.m.			
May	30	Mond			Memorial Day; a holiday			
June	12	Sunda			Baccalaureate service			
June	14	Tuesd			Spring quarter closes 5:20 p.m.			
June	15		lesday		ty-ninth annual commencement			
June	20	Mond			nmer session begins			
July	30	Frida	У	Sur	nmer session closes			
	P_{1}	roaram	of Sup	hlom	entary Examinations			
-								
Friday,	Sept	t, 24	9-12 a.m	1.	Physics			
			2-5 p.m.		Chemistry, experimental engineer-			
					ing			
Saturday,	Sept	. 25	9-12 a.m	1.	Mathematics and mechanics			
			2-5 p.m.		Drawing and descriptive geometry			
Monday,	Sept	t. 27	9-12 a.m	1.	Metallurgical subjects			
			2-5 p.m.		Electrical and mechanical engineer-			
					ing subjects, mine plant and survey-			
					ing			
Tuesday,	Sept	t. 28	9-12 a.m	1.	Geology and mineralogy			
	,		2-5 p.m.		Mining subjects			
			0 1					

THE SCHOOL OF MINES FACULTY

MARION LEROY BURTON, Ph.D., D.D., LL.D., President¹

LOTUS DELTA COFFMAN, Ph.D., President-elect

WILLIAM WATTS FOLWELL, LL.D., President Emeritus

CYRUS NORTHROP, LL.D., President Emeritus

WILLIAM R. APPLEBY, M.A., Dean, and Professor of Metallurgy

FRANCIS B. BARTON, Docteur de l'Université de Paris, Assistant Professor of Romance Languages

THOMAS M. BRODERICK, Ph.D., Assistant Professor of Geology

WILLIAM E. BROOKE, B.C.E., M.A., Professor of Mathematics and Mechanics

ANDERS J. CARLSON, C.E., Assistant Professor of Mine Plant and Mechanics

PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy

ELTING H. COMSTOCK, M.S., Professor of Mine Plant and Mechanics

JAMES DAVIES, Ph.D., Assistant Professor of German

WILLIAM H. EMMONS, Ph.D., Professor of Geology and Mineralogy

HENRY A. ERIKSON, B.E.E., Ph.D., Professor of Physics

JULES T. FRELIN, B.A., Assistant Professor of Romance Languages

- ROBERT W. FRENCH, B.S. in C.E., Assistant Professor of Drawing and Descriptive Geometry
- ISAAC W. GEIGER, Ph.D., Assistant Professor of Chemistry
- ALBERT G. GOODWYN, Captain, Infantry, U.S.A., Professor of Military Science and Tactics
- FRANK F. GROUT, M.S., Ph.D., Professor of Geology and Mineralogy

OSCAR E. HARDER, Ph.D., Associate Professor of Metallography

WILLIAM F. HOLMAN, Ph.D., Associate Professor of Mathematics and Mechanics

A. WALFRED JOHNSTON; M.A., Assistant Professor of Geology

LAUDER W. JONES, Ph.D., Professor of Chemistry

WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive Geometry

SAMUEL KROESCH, Ph.D., Assistant Professor of German

EDWIN M. LAMBERT, M.E., Associate Professor of Mining Engineering

IRVILLE C. LECOMPTE, Ph.D., Professor of Romance Languages

LOUALLEN F. MILLER, B.S., M.A., Professorial Lecturer in Physics

WALTER R. MYERS, Ph.D., Assistant Professor of German

EVERETT W. OLMSTED, Ph.D., Professor of Romance Languages

WALTER H. PARKER, E.M., Associate Professor of Mining

LEVI B. PEASE, M.S., Professor of Metallurgy

RUTH S. PHELPS, M.A., Associate Professor of Romance Languages

FRANK B. ROWLEY, M.E., Associate Professor of Mechanical Engineering

¹ Resigned July 1, 1920.

- WILLIAM T. RYAN, E.E., Associate Professor of Electrical Engineering CARL SCHLENKER, B.A., Professor of German
- COLBERT SEARLES, Ph.D., Professor of Romance Languages
- GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Professor of Electrical Engineering
- CHARLES F. SHOOP, B.S., Associate Professor of Experimental Engineering CHARLES F. SIDENER, B.S., Professor of Chemistry
- EDWARD H. SIRICH, Ph.D., Associate Professor of Romance Languages
- M. CANNON SNEED, Ph.D., Associate Professor of Chemistry
- CLINTON R. STAUFFER, B.S., Ph.D., Professor of Geology
- ANTHONY ZELENY, M.S., Ph.D., Professor of Physics
- LEON ARCHIBALD, B.S., Instructor in Drawing and Descriptive Geometry
- RALPH L. DOWDELL, Met.E., Instructor in Metallography
- LYNWOOD DOWNS, M.A., Instructor in German
- CARL O. DUNBAR, Ph.D., Instructor in Geology
- HOWARD D. MYERS, B.S. in C.E., Instructor in Dra ing and Descriptive Geometry
- ORRIN W. POTTER, E.M., Instructor in Drawing and Descriptive Geometry
- BURTON J. ROBERTSON, E.E., Instructor in Experimental Engineering
- JAMES C. SANDERSON, Ph.D., Instructor in Mine Plant and Mechanics
- ELWYN L. SMITH, B.S., Instructor in Metallurgy
- ARTHUR J. TIEJE, Ph.D., Instructor in Geology
- ELIZABETH B. HENDERSON, Librarian

GENERAL INFORMATION

The School of Mines was established by the Board of Regents in 1888, upon recommendation of the general faculty of the University. The buildings and laboratories of the school are located on the main campus of the University. The mining districts of Minnesota are within a few hours, by rail, from Minneapolis. The heartiest coöperation exists between the various mine managements and the school, so that the mining properties are at all times open to parties from the school for observation and study trips. Practical surveying, geological field work, and underground work are carried on in one or more of the districts. Students in the School of Mines have, therefore, all the advantages afforded by a large university combined with ample opportunity for field observation and experience.

The School of Mines occupies the new building provided by the Legislature of 1913. In the basement are the assay and electro-metallurgical laboratories, together with machinery room, instrument room, balance-room, furnace-rooms, and necessary storerooms. On the first floor are the administrative offices, and offices and lecture-rooms of the departments of Metallurgy and Mine Plant and Mechanics. On the second floor are the offices, lecture-rooms, and drafting-rooms of the Department of Mining, the ore-dressing laboratory, and the library of the school. On the third floor are the offices, laboratories, and lecture-rooms of the Department of Metallography, the Department of Mining Engineering, junior draftingroom, photographic darkrooms, blue-printing room, and offices and computing rooms for the branch of the experiment station serving the tax commission.

DEGREES

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degrees of Engineer of Mines (E.M.), Engineer of Mines in Geology [E.M.(Geology)], and Metallurgical Engineer (Met.E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four years, and vice versa, provided such candidate completes an additional year's work at the school and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and Architecture, and in the School of Chemistry, who contemplate taking a degree in this school after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thoro courses in mechanics, mathematics, surveying, physics, chemistry, and the necessary theory and practice of structural, mechanical, and electrical engineering.

(a) Geology—to determine the location of the ore.
(b) Mineralogy—to determine its nature.
(c) Assaying—to determine if it has value for treatment.
(d) Mining engineering—to furnish material for treatment.
(e) Ore-testing—to determine best methods of treatment.
(f) Ore-dressing—to furnish products for metallurgical treatment.
(g) Metallurgy—to smelt and refine ores and ore-dressing products; reduction to metals.
(h) Metallography—to study metals and their alloys.

EXPERIMENT STATION

The School of Mines Experiment Station has been recently established to promote the development of the mining and mineral resources of the state; to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates for the tax commission, and to do such other work along the lines above outlined as may be requested by other state departments. Coöperation has been effected with the United States Bureau of Mines, the United States Geological Survey, the Minnesota Geological Survey, and the School of Chemistry.

The experiment station is prepared to assist citizens interested in these lines of work, and to assay specimens of ore, rocks, clays, and minerals found within the state, free of charge.

In submitting samples the sender must state the exact location where each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the office of the station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, the University of Minnesota, Minneapolis, Minnesota.

SCHOOL OF MINES

ADMISSION

The courses leading to the degrees of Engineer of Mines, Engineer of Mines (in Geology), and Metallurgical Engineer may be completed in four years.

Freshmen will be divided into two sections as follows:

a. Those entering with credits in higher algebra and solid geometry.

b. Those entering without credits in higher algebra and solid geometry. Students in section b will carry a special course in mathematics during their freshman year.

Details as to admission and entrance requirements, description of subjects accepted for admission, and list of fees and expenses will be found in the bulletin of general information, which will be sent to any address upon application to the registrar, the University of Minnesota, Minneapolis.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

ADMISSION TO ADVANCED STANDING

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrollment Committee of the School of Mines.

GRADUATION

Students completing courses of study to the satisfaction of the faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examination in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least the full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examination for the third quarter. Irregular attendance will debar a student from entering all final examinations.

THESIS

The thesis work is intended to bring in review and connect the work in mining and metallurgy, geology and mineralogy, mechanical and electrical engineering, mathematics and mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology, for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem, for candidates for the degree of Metallurgical Engineer. As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

Prior to the reopening of field work at the School of Mines, Tuesday, September 21, 1920, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on the project must be under way by December I. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the school.

SPECIAL NOTES

Students failing to receive a quarter mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the registrar his average in all subjects and present himself for supplementary examinations, according to the program on page 3.

Failure of the registrar to notify a student of deficiencies will not be accepted as a reason for neglecting to report for necessary supplementary examinations. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

Students failing to receive a quarter mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination for any quarter will be given zero on the examinations.

Students whose absences in any quarter exceed 20 per cent of the scheduled class hours will not be permitted to take examinations without special permission of the faculty.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

During the academic year students will be held responsible for the receipt of official communications sent to them through the University post-office. During the summer vacation they will be held responsible for the receipt of such communications sent to the home address given on registration blank for the preceding academic year, unless formal notification of their correct address is filed with the registrar and the dean.

COURSES OF STUDY

UNIFORM CURRICULUM TO END OF SOPHOMORE YEAR

The courses leading to the degrees of Engineer of Mines, Engineer of Mines (in Geology), and Metallurgical Engineer are uniform for the first two years.

Freshmen will be divided into two sections as follows:

- a. Those entering with credits in advanced algebra and solid geometry.
- b. Those entering without credits in advanced algebra and solid geometry.

Subjects with the prefix a are to be taken by freshmen in section a; those with the prefix b are to be taken by freshmen in section b; and those without prefix are to be taken by students of both sections.

FRESHMAN YEAR

First Quarter

Chemistry 1f,* General Inorganic, 7† Drawing 11f, Engineering Drawing, 10 a. Mathematics 2f, Algebra, 6 b. Mathematics 1f, Algebra and Solid Geometry, 6 Mineralogy 23f, Elements of Mineralogy, 8 Military Drill

Second Quarter

Chemistry 2w, General Inorganic, 7, Chem. If Drawing 12w, Engineering Drawing, 8, Draw. 11f Mathematics 4w, Trigonometry, 6 Metallurgy 1w, Assaying, 4, Chem. If, Mineral. 23f Metallurgy 2w, Assaying Laboratory, 8, Chem. 1f, Mineral. 23f Mineralogy 24w, Elements of Mineralogy, 4 Military Drill

Third Quarter

Chemistry 3s, General Inorganic, 7, Chem. 2w Drawing 13s, Engineering Drawing, 8, Draw. 12w Mathematics 5s, Analytical Geometry, 6, Math. 4w b. Mathematics 3s, Algebra, 4, Math. 1f Mineralogy 25s, Elements of Mineralogy, 8 Military Drill

^{*} The suffixes f,w, or s, after the course number indicate the quarter in which a course is offered—fall, winter, or spring quarter respectively. Two or three suffixes indicate that a course is offered in each of the corresponding quarters.

[†] Figure following the descriptive name of a course indicates number of hours per week. Course names following indicate prerequisite courses.

· SCHOOL OF MINES

SOPHOMORE YEAR

First Quarter

Chemistry 11f, Qualitative Analysis, 7, Chem. 3s

Drawing 14f, Descriptive Geometry, 3, Draw. 13s, Math. 5s

Geology 105f, Rock Study, 4, Geol. 25s

Mathematics 6f, Calculus, 4, Math. 5s

Metallurgy 3f, General, 3, Met. 1w, 2w, Chem. 3s

Mining Engineering 1f, Mine-Surveying, 3, Math. 4w

Physics 23f, Elements of Mechanics, 3, Math. 5s

Physics 24f, Mechanics Laboratory, 2, Math. 5s

Military Science and Tactics, 2a, 2b, or 2c.

Work in military science and tactics for sophomores will open on Friday, Sept. 17, at 8:30 a.m., and continue for ten days. Satisfactory completion of Course 2a, 2b, or 2c, at that time is required of all sophomores. This course applies only to sophomores who are required to leave the following May I for field work.

Second Quarter

Chemistry 20w, Quantitative Analysis, 8, Chem. 11f

Drawing 15w, Drafting, 4, Draw. 14f

Geology Iw, General, 3, Geol. 125f

Geology 106w, Petrography, 4, Geol. 105f

Mathematics 7w, Calculus, 3, Math. 6f

Metallurgy 4w, Met. of Pig Iron, 3, Met. 3f

Mining Engineering 2w, Mine-Surveying, 3, Min. Eng. 1f

Physics 43w, Heat, 3, Phys. 23f

Physics 44w, Heat Laboratory, 2, Phys. 23f

Third Quarter

Geology 2s, General, 7, Geol. 105f

Mathematics 8s, Calculus, 6, Math. 7w

Metallurgy 5s, Wrought Iron and Steel, 3, Met. 4w

Mining 1s, Introductory Mining, 4

Mining Engineering 3s, Mine-Surveying, 7, Min. Eng. 2w

Physics 63s, Magnetism and Electricity, 3, Phys. 43w

Physics 64s, Magnetism and Elec. Lab., 2, Phys. 43w

Mining Engineering 4s, Field Work beginning about May 1, 7 weeks, Min. Eng. 3s

Geology 85, Field Work beginning about June 20, 2 weeks, Geol. 2s Underground Mining Work beginning about July 5

JUNIOR AND SENIOR YEARS

Courses Leading to the Degree of Engineer of Mines

JUNIOR YEAR

First Quarter

Experimental Engineering, M.E. 83.4f, Elementary Lab. 4, with Mech. 12f Geology 73f, Economic, 3, Geol. 2s, 105f

Mechanics 9f, Mechanics, 5, Math. 8s

Mechanics 12f, Mine Plant, 6, Math. 8s

Metallurgy 105f, Base Metals, 4, Met. 3f

Metallurgy 12f, Ore-Dressing, 3, Phys. 5s, Geol. 25s

Mining 2f, Exploration, 5, Mining 1s

Mining 6f, First Aid, I week

Second Quarter

Experimental Engineering, M. & M. 43.2w, Materials-Testing Lab., 4, with Mech. 10w

Mechanics 10w, Mechanics of Materials, 5, Mech. 9f

Mechanics 13w, Mine Plant, 6, Mech. 12f

Metallurgy 106w, Base Metals, 4, Met. 105f

Metallurgy 13w, Ore-Dressing, 3, Met. 12f

Mining 3w, Tunneling, 5, Mining 2f

Mining Engineering 5w, Mine-Mapping, 6, Min. Eng. 4s

Third Quarter

Mechanics 11s, Mechanics of Materials, 5, Mech. 10w

Mechanics 14s, Mine Plant, 6, Mech. 13w

Metallurgy 107s, Precious Metals, 4, Met. 106w

Metallurgy 17s, Ore-Dressing Lab., 6, Met. 13w

Mining 4s, Mining Methods, 5, Mining, 3w

Mining Engineering 6s, Mine-Mapping, 6, Min. Eng. 5w

Metallurgy 21s, Field Work in Metallurgy beginning about May 1, 10 days, satisfactory completion of junior year

Mining 5s, Field Work in Mine Plant and Mining beginning about May 10, 2 weeks, satisfactory completion of junior year

SENIOR YEAR

First Quarter

Electrical Engineering 41f, Electric Power, 5, Phys. 5s

Geology 111f, Ore Deposits, 3, Geol. 73f, 106w

Mechanics 17f, Water Power, 7, Mech. 9f

Mechanics 18f, Engineering Construction, 8, Mech. 11s

Metallurgy 6f, Ore-Testing, 2, Met. 107s

Metallurgy 7f, Ore-Testing Lab., 8, Met. 107s

Mining 52f, Mining Reports, 5, Mining 4s

Mining 51f, Mine Rescue, I week

Mining 55f, Thesis, 2, Mining 4s

Second Quarter

Experimental Engineering, M.E. 184.1w, Experimental Lab. 4, Exp. Eng. M.E. 83.4f

Geology 112w, Petroleum, 3, Geol. 141f

Geology 80w, Advanced Historical, 3, Geol. 73f

Mechanics 19w, Mine Plant Design, 9, Mech. 18f

Metallurgy 8w, Special Problems, 4, Met. 107s

Mining 53w, Mining Problems, 5, Mining 52f Mining 56w, Thesis, 12, Mining 55f

Third Quarter

Geology 113s, Problems in Ore Deposits, 4, Geol. 112w Mechanics 20s, Mine Plant Design, 12, Mech. 10w Metallurgy 9s, Special Problems, 8, Met. 107s Mining 54s, Mining Law, 5, Mining 53w Mining 57s, Thesis, 12, Mining 56w

DEPARTMENT OF MINING

The department is well supplied with samples of the smaller mine equipment, models, drawings, photographs, lantern slides, and mine maps. The lectures treat of prospecting, development, support of excavations, mining methods, mine administration, mining law, and the necessary allied subjects. The courses in mining extend through the sophomore, junior, and senior years.

FIELD WORK IN MINING

JUNIOR YEAR

At the end of the junior year students are required to study mine plant and mining methods in one or more mining districts under the direction of members of the faculty. This work begins about May I, and not over three weeks will be devoted to it. The work is carried on in the leading western metal mining districts, the exact location to be announced in April of each year. The expenses for the trip are estimated at \$225. A deposit of \$50 must be made before starting on the trip to cover board and lodging and necessary side trips. Any balance will be returned at the close of the work in the field.

All notes, data, and sketches, necessary for a complete report on the field work, must be fully and neatly recorded in notebooks. These notebooks will be collected at the close of the trip and returned to the student at the reopening of field work at the school. In judging the character of the student's field work equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below the standard that should be demanded of candidates for senior work. During the months of June, July, and August, the student is urged to spend at least six weeks in actual underground mining work in the West, for which he may receive wages. The department will render all possible assistance in locating students in districts of their choice.

Field work will reopen at the School of Mines, Tuesday, September 21, 1920. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in Mining and Metallurgy must be prepared at the School of Mines under the direct supervision of the

14

departments concerned: Metallurgy, September 21 to 28, inclusive; Mining and Mine Plant, September 29 to October 12, inclusive.

On October 12 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 12. These reports shall become the property of the school.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reason, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

DEPARTMENT OF MINING ENGINEERING

MINE-SURVEYING

The work in surveying is given in the sophomore year and is designed primarily for mining engineers. The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabi, Cuyuna, or Vermilion Range. The exact location will be announced in March of each year. The expenses for this trip are estimated at \$150.

The students will be divided into squads of two to four. Each student will be required to complete satisfactorily a practical course in plane and underground surveying including exercises in chaining and taping; adjustment and use of surveying instruments; solar and stellar observations; laying out railroad tangents and curves; making earthwork estimates; and other problems. In addition each squad will be required to make a yardage estimate of the stripping of an open-pit mine; to transfer a meridian, from the surface, underground and make a complete survey of an underground mine.

The data obtained will be used in the course in mine-mapping during the winter quarter of the junior year.

A full equipment of surveying instruments of the latest and best types is furnished each squad for this work.

SCHOOL OF MINES

COURSES LEADING TO THE DEGREE OF ENGINEER OF MINES (IN GEOLOGY)

JUNIOR YEAR

First Quarter

Chemistry 123f, Iron and Steel Analysis, 7, Chem. 20w

Geology 61f or 65f, Physical Mineralogy or Crystallography, 6, Mineralogy 25s

Geology 73f, Economic, 3, Geol. 2s, 105f

Geology 131f, Advanced Petrology, 6, Geol. 2s, 106w

Geology 151f, Advanced General, 3, Geol. 73f

German 4f or 7f, or French 4f or 30f, or Spanish 204f or 230f, 5 or 3

Mining 2f, Exploration, 5, Min. Is

Mining 6f, First Aid, I week

Electives, 6

Second Quarter

Chemistry 124w, Mineral and Ore Analysis, 7, Chem. 20w

Geology 124w, Struct. and Metamorphic, 3, Geol. 73f, 105f

Geology 132w, Advanced Petrology, 6, Geol. 2s, 106w

Geology 144w, Geologic Maps, 6, Geol. 73f

Geology 152w, Advanced General, 3, Geol. 73f

German 5w or 25w, or French 5w or 31w, or Spanish 205w or 231w, 5 or 3

Mining 3w, Tunneling, 5, Min. 2f

Mining Engineering 5w, Mine-Mapping, 6, Min. Eng. 4s

Third Quarter

Geology 125s, Struct. and Metamorphic, 6, Geol. 73f, 105f

Geology 133s, Advanced Petrology, 6, Geol. 2s, 106w

Geology 145s, Geologic Maps, 12, Geol. 73f

Geology 153s, Advanced General, 3, Geol. 73f

Mining 4s, Mining Methods, 5, Min. 3w

Electives, 3

Geology 150s, Field Work in Geology beginning about May 1, six weeks, Geol. 125s

Geologic Field Work beginning about June 15 with geological surveys or private companies

SENIOR YEAR

First Quarter

Geology 41f, Paleontology, 3, Geol. 2s Geology 111f, Ore Deposits, 3, Geol. 73f, 106w Metallurgy, 12f, Ore-Dressing, 3, Phys, 5s, Geol. 25s Mining 52f, Mining Reports, 5, Min. 4s Mining 51f, Mine Rescue, 1 week Thesis, 8 Electives, 9

Second Quarter

Geology 42w, Paleontology, 3, Geol. 28 Geology 112w, Petroleum, 3, Geol. 111f Geology 137w, Testing Economic Materials, 5, Geol. 73f Geology 140w, Applied Petrography, 5, Geol. 111f, 138 Geology 166w, Mineralography, 6, Geol. 111f Metallurgy 13w, Ore-Dressing, 3, Met. 12f Mining 53w, Mining Problems, 5, Min. 52f Thesis, 3 Electives, 3

Third Quarter

Geology 43s, Paleontology, 3, Geol. 2s Geology 113s, Problems in Ore Deposits, 4, Geol. 112w Geology 141s, Applied Petrography, 5, Geol. 111f, 13s Geology 167s, Mineralography, 6, Geol. 111f Metallurgy 17s, Ore-Dressing Lab., 6, Met. 13w Mining 54s, Mining Law, 5, Min. 53w Thesis, 10

FIELD WORK IN GEOLOGY

At the end of the sophomore year mining students are required to devote about three weeks to geologic mapping. This course usually comes after a seven weeks' course in surveying and the fields chosen are the Vermilion and Mesabi iron ranges of Minnesota. This work is intended to train the students in the interpretation of field relations and the preparation of geologic maps and cross-sections.

The second field course in geology is required only of those students who are candidates for the Engineer of Mines in Geology degree. The course begins early in May and is completed in June. The course requires altogether about six weeks' work, and the field chosen is the Black Hills region of South Dakota or some other western region. The student is trained in the interpretation of field data; in detailed mapping, underground and on the surface; in the preparation of geologic cross-sections through mines; and he may gather material which will serve as a basis for future study in advanced courses the following year. The work conforms to the standards of official surveys as nearly as practicable. At the close of the field season the students are expected to obtain positions with mining companies either as miners or as engineers, or if openings are available, they may enter geological surveys for the season's work.

Field work in geology for students having taken either of the above trips will reopen at the School of Mines, Tuesday, September 21, 1920. The final reports covering the field work must be prepared at the School of Mines under the direct supervision of the Department of Geology. These reports are to be turned in to the department on September 28.

SCHOOL OF MINES

COURSES LEADING TO THE DEGREE OF METALLURGICAL ENGINEER

JUNIOR YEAR

First Quarter

Geology 73f, Economic, 3, Geol. 2s, 105f

Mechanics 9f, Mechanics, 5, Math. 8s.

Mechanics 12f, Mine Plant, 6, Math. 8s

Metallurgy 12f, Ore-Dressing, 3, Phys. 5s, Geol. 25s

Metallurgy 14f, Ore-Dressing Lab., 4, Phys. 5s, Geol. 25s

Metallurgy 105f, Base Metals, 4, Met. 3f

Metallurgy 153f, Metallography, 7, Chem. 20w, Phys. 5s

Mining 6f, First Aid, I week

Second Quarter

Mechanics 10w, Mechanics of Materials, 5, Mech. 9f Mechanics 15w, Metallurgical Plant, 3, Mech. 12f Metallurgy 13w, Ore-Dressing, 3, Met. 12f, 14f Metallurgy 15w, Ore-Dressing Lab., 4, Met. 12f, 14f Metallurgy 106w, Base Metals, 4, Met. 105f Metallurgy 154w, Metallography, 7, Met. 153f Mining Engineering, 5w, Mine-Mapping, 6, Min. Eng. 4s

Third Quarter

Mechanics IIS, Mechanics of Materials, 5, Mech. IOw

Mechanics 16s, Metallurgical Plant, 3, Mech. 13w

Metallurgy 16s, Ore-Dressing Lab., 6, Met. 13w, 15w

Metallurgy 107s, Precious Metals, 4, Met. 106w

Metallurgy 155s, Metallography, 7, Met. 154w

Mining Engineering 6s, Mine-Mapping, 6, Min. Eng. 5w

- Metallurgy 21s, Field Work in Metallurgy beginning about May 1, 10 days, satisfactory completion of junior year
- Mining 5s, Field Work in Mine Plant and Mining beginning about May 10, 2 weeks, satisfactory completion of junior year

SENIOR YEAR

First Quarter

Electrical Engineering 41f, Electric Power, 5, Phys. 5s Geology 111f, Ore Deposits, 3, Geol. 73f, 106w Mechanics 17f, Water Power, 7, Mech. 9f Metallurgy 6f, Ore-Testing, 2, Met. °107s Metallurgy 7f, Ore-Testing Lab., 8, Met. 107s Metallurgy 108f, Electrometallurgy, 3, Met. 107s Metallurgy 18f, Thesis, 8

Second Quarter

Geology 11'2w, Petroleum, 3, Geol. 111f Metallurgy 8w, Special Problems in Ore-Testing, 4, Met. 107s

COURSES OF STUDY

Metallurgy 10w, Advanced Metallurgy, 10, Met. 1078 Metallurgy 19w, Thesis, 18, Met. 18f Metallurgy 164w, Advanced Metallography, 3, Met. 1558, or Geology 80w, Advanced Historical, 3, Geol. 73f

Third Quarter

Metallurgy 9s, Special Problems in Ore-Testing, 4, Met. 107s Metallurgy 11s, Advanced Metallurgy, 10, Met. 107s Metallurgy 20s, Thesis, 18, Met. 19w Metallurgy 165s, Advanced Metallography, 3, Met. 155s, or Geology 113s, Problems in Ore Deposits, 4, Geol. 112w

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use. The practical work consists in visits to smelting and refining works which are accessible. The work in metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags is shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to 'the work in the laboratory. A large, well-ventilated furnace-room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their report in detail. This work is offered to students completing the necessary courses in mineralogy and chemistry.

ORE-DRESSING

The lectures and recitations in ore-dressing extend through the junior year, and comprise a detail study of ore-dressing and concentrating machinery, together with a study of typical combinations of dressing machines as found in the various mining districts of the United States. In connection with the theoretical work, the ore-dressing laboratory and testing plant of the school are utilized for illustration, and practical use of ore-dressing machinery.

ORE-TESTING

The lectures treat of the problems in ore-testing such as extraction and losses in roasting, concentration, and other milling operations. Both the ore-dressing laboratory and the Mines Experiment Station laboratory are available for working out practical problems. The Mines Experiment Station laboratory is the old Ore-Testing Works modified to aid the mining interests of the state of Minnesota in solving problems connected with concentration and conservation of the iron and manganiferous ores of the state.

The School of Mines laboratories therefore serve both educational and commercial needs.

Educational.—The student becomes familiar with the use of the various types of machines such as crushers, rolls, classifiers, concentration and flotation machinery.

Commercial.—The laboratories are used by the Mines Experiment Station to determine the best methods of treatment to produce a commercial product at the lowest cost. Recently additional commercial machinery has been obtained and new appliances are constantly being developed. Commercial samples varying from 500 pounds to car-load lots can be treated by various methods.

FIELD WORK IN METALLURGY

At the end of the junior year students are required to study practical operations at one or more smelters and mills. This begins about May 1. The expenses for this trip are estimated at \$225. A deposit of \$50 must be made before starting on the trip to cover board and lodging and necessary side trips. Any balance will be returned at the close of the work in the field.

All notes, data, and sketches, necessary for a complete report on the field work, must be fully and neatly recorded in notebooks. These notebooks will be collected at the close of the trip and returned to the student at the reopening of field work at the school. In judging the character of the student's field work equal importance will be given to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below standard.

Upon termination of the junior field work in metallurgy and two weeks in mining and mine plant (not later than June 1), the members of the junior class who are candidates for the degree of Metallurgical Engineer are urged to spend at least six weeks in practical work in one or more of the smelters or mills, for which they may receive wages. The department will render all possible assistance in locating students in districts of their choice.

Field work will reopen at the School of Mines, Tuesday, September 21, 1920. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in metallurgy and mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: metallurgy, September 21 to 28, inclusive; mining and mine plant, September 29 to October 12, inclusive.

On October 12, all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 12. These reports shall become the property of the school.

METALLOGRAPHY

Courses in metallography are offered to candidates for the degree of Metallurgical Engineer in the School of Mines, to students in the Colleges of Dentistry, Engineering and Architecture, Science, Literature, and the Arts, in the School of Chemistry, and in the Graduate School.

These courses deal with the study of metals and alloys. The lectures treat of and describe the apparatus used in connection with this subject, the method of preparing specimens, physical and metallographic principles involved, and the interpretation of the results of microscopic examination and thermal analysis. There is an elaborate file of references and abstracts relating to the whole field of metallography, furnishing up-to-date information on the various phases of the work. A collection of specimens, photomicrographs, and lantern slides covering wrought iron. low-carbon structural, rail, and tool steels, brasses, bronzes, and other industrial alloys is available for study and comparison. The laboratory course includes the microscopic and pyrometric study of metals and alloys. The laboratories are equipped with grinding and polishing apparatus. microscopes, photomicrographic apparatus, vacuum electric furnace, carbon resistance furnaces, nichrome and platinum resistance furnaces of various designs, gas furnaces, heat-treating furnace, and pyrometers of the latest and improved types. There is a special darkroom for the preparation of photomicrographs.

DEPARTMÉNTAL STATEMENTS

EXPLANATION OF COURSE NUMBERS

The suffixes f, w, or s, indicate the quarter in which a course is offered, e.g., fall, winter, or spring quarters respectively. More than one suffix indicates that a course is offered in each of the corresponding quarters. No suffix indicates that the time of taking a course is to be arranged with the departments concerned.

All undergraduate courses are numbered from 1 to 100. All courses open to undergraduates and graduates are numbered from 101 to 200. Strictly graduate courses are numbered from 201 up.

CHEMISTRY

Professors Lauder W. Jones, Charles F. Sidener; Associate Professor M. Cannon Sneed; Assistant Professor Isaac W. Geiger,

COURSES

No.	Title	Lec. or rec. hrs.	Lab. hrs.	Required of	Prefeq. courses
IÍ,	General Inorg. Chemistry	3	4	All fr.	
2W	General Inorg. Chemistry	•• 3	4	All fr.	ıf
35	General Inorg. Chemistry	3	4	All fr.	2W
III	Qualitative Chem. Analysis	•• 3	4	All soph.	- 3S
20W	Quantitative Chem. Analysis	і	7.	All soph.	rif .
123f	Iron and Steel Analysis	I	б	Jr. Geol.	20W
124W	Mineral and Ore Analysis	I	6	Jr. Geol.	^ 20W

- If. GENERAL INORGANIC CHEMISTRY. A beginning course in chemistry. A study of the general laws of chemistry and of the non-metals and their compounds.
- 2W. GENERAL INORGANIC CHEMISTRY. A continuation of Course If.
- 35. GENERAL INORGANIC CHEMISTRY. A study of the metals and their compounds. A continuation of Course 2w.
- 11f. QUALITATIVE CHEMICAL ANALYSIS. Laboratory work in systematic qualitative analysis with lectures on solution, ionization, chemical and physical equilibrium, oxidation and reduction, and other subjects pertinent to qualitative analysis.
- 20w. QUANTITATIVE CHEMICAL ANALYSIS: An introductory course covering the general principles and methods of quantitative analysis, both gravimetric and volumetric. Typical problems will be assigned and attention given to proper laboratory practice. SIDENER, GEIGER, and Assistants.
- 123f. IRON AND STEEL ANALYSIS. The rapid technical methods for the determination of the common constituents of iron ore. Iron and steel will be discussed and compared, and typical problems assigned for laboratory practice. SIDENER, GEIGER, and Assistants.

124W. MINERAL AND ORE ANALYSIS. A course in the rapid technical methods for the determination of important constituents in minerals, ores, and slags. SIDENER, GEIGER, and Assistants.

DRAWING AND DESCRIPTIVE GEOMETRY

Professor William H. Kirchner; Assistant Professor Robert W. French; Instructors Leon Archibald, Howard D. Myers, Orrin W. Potter.

COURSES

		Lec.	or	Lab.		
No.	Title	. rec.	hrs.	hrs.	Required of	Prereq. courses
ııf	Engineering Drawing		0	10	All fr.	
12W	Engineering Drawing		0	8	All fr.	rıf
138	Engineering Drawing		0	8	All fr.	I2W
14f	Descriptive Geometry		3	0	All soph.	13s, Math. 5s
15W	Drafting	•••••	0	4	All soph.	14f

- 11f. ENGINEERING DRAWING. Sketching, lettering, representation, elements of drafting, details of machines and structures, interpretation of working drawings. KIRCHNER, ARCHIBALD.
- 12w. ENGINEERING DRAWING. Continuation of Course 11f. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. KIRCHNER, ARCHIEALD, POTTER.
- 13s. ENGINEERING DRAWING. Continuation of Course 12w. The elements of general drafting. Maps and sketches. Brush and pen conventions. KIRCHNER, ARCHIBALD, POTTER.
- 14f. DESCRIPTIVE GEOMETRY. Projection; central and special cases, principles and application, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems. KIRCHNER.
- 15w. DRAFTING. Graphics, machine drafting, and structural drafting. Instruction in drafting-room methods. ARCHIBALD, POTTER.

ELECTRICAL ENGINEERING-

Professor George D. Shepardson; Associate Professor William T. Ryan.

COURSES

		Lec.	01	Lab.		
No.	Title	rec.	hrs.	hrs.	Required of	Prereq. courses
41f	Electric Power		2	3-	Sr. E.M.	Physics 5s

41f. ELECTRIC POWER. Elementary principles of continuous currents. Continuous current generators and motors. Elementary principles of alternating currents. Alternating current generators, transformers, and motors. Measurement of power. Elementary principles of transmission and distribution. Lectures, recitation, laboratory work. RYAN.

EXPERIMENTAL ENGINEERING

Professors William E. BROOKE; Associate Professors William F. Hol-Man, Frank B. Rowley, Charles F. Shoop; Instructor Burton J. Robertson.

COURSES

No.	Title	Lec. or rec. hrs.	Lab. hrs.	Required of	Prereq. courses
M.E. 83.4f M. & M. 43.2w	Elementary Laborator Materials Testing Lab	•	4 4	Jr. E.M. Jr. E.M.	With Mech. 12f With Mech. 10w
M.E. 184.1w	Experimental Lab	• ••	4	Sr. E.M.	M.E. 83.4f

- M.E.83.4f. ELEMENTARY LABORATORY. Calibrations of thermometer, gages, weirs, nozzle, orifices, and meters. Efficiency of machines, friction of belting, friction tests, burning point, chill point, viscosity and specific gravity of oils. Tests of water motors, rams, and pulsometers.
- M.&M.43.2w. MATERIALS TESTING LABORATORY. Investigation of physical properties of metals and engineering materials: wood, cement, ropes, etc., supplemented by lectures on materials of construction and methods of testing. BROOKE, HOLMAN.
- M.E.184.1W. EXPERIMENTAL LABORATORY. Indicator practice, valve-setting, separating and throttling calorimeter, tests of steam engine, gas engine, pump, air compressor, turbine, boiler, and power plant. Row-LEY, SHOOP.

GEOLOGY AND MINERALOGY

Professors William H. Emmons, Clinton R. Stauffer, Frank F. Grout; Assistant Professors A. Walfred Johnston, Thomas M. Broderick; Instructors Carl O. Dunbar; Arthur J. Tieje.

COURSES

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
IW	General Geology	•• 3		All soph.	105f
28	General Geology	•• 3	4	All soph.	105f
18w	Elem. of Paleontology	3		Elective	
19s	Elem. of Paleontology	•• 3		Elective	
23f	Elem. of Mineralogy	•• 4	4	All fr.	
24W	Elem. of Mineralogy	2	2	All fr.	
255	Elem. of Mineralogy	4	4	All fr.	
41f	Paleontology	3		Sr.E.M.(Geol.)	28
42W	Paleontology	3		Sr.E.M.(Geol.)	25
435	Paleontology	•• 3		Sr.E.M.(Geol.)	25
61f	Physical Mineralogy	2	4	Elective	255
65f	Crystallography	2	4	Elective	255
73f	Econ. Geology	3		All jr.	28, 105f

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of I	rereq. courses
Sow	Advanced Hist. Geology	3		Sr.E.M.&Met.E.	736
85	Summer Field Work		wks.	All soph.	25
ioit	Principles of Stratigraphy	3		Elective	255
105f	Elem. of Rock Study		, 4	All soph.	258
IOOW	Petrography		4	All soph.	rosf
IIIf	Ore Deposits	•• 3		All sr.	73f, 106w
[12W	Geology of Petroleum			All sr.	IIIf
1138	Problems in Ore Deposits		4	All sr.	II2W
124W	Struct. & Metamorph. Geol	0	• •	Jr.E.M.(Geol.)	73f, 105f
1258	Struct. & Metamorph. Geol	б		Jr.E.M.(Geol.)	73f, 105f
131f	Advanced Petrology		3	Jr.E.M.(Geol.)	2 5, 1 06w
132W	Advanced Petrology	0	3	Jr.E.M.(Geol.)	28, 106W
1338	Advanced Petrology	0	3	Jr.E.M.(Geol.)	28, 106W
I37W	Testing Econ. Minerals		4	Sr.E.M.(Geol.)	73f
140W	Applied Petrography		4	Sr.E.M.(Geol.)	111f, 13s
1418	Applied Petrography		4	Sr.E.M.(Geol.)	111f, 13s
144W	Construction and Interpretation				
	of Geologic Maps		б	Jr.E.M.(Geol.)	73f
145S	Construction and Interpretation				
	of Geologic Maps		I 2	Jr.E.M.(Geol.)	73f
1505	Field Geology		• •	Jr.E.M.(Geol.)	1255
151f	Advanced General Geology		• •	Jr.E.M.(Geol.)	73f
I52W	Advanced General Geology	0	• •	Jr.E.M.(Geol.)	73f
I53S	Advanced General Geology		• •	Jr.E.M.(Geol.)	73f
166w	Mineralography		6	Sr.E.M.(Geol.)	IIII
167S	Mineralography		6	Sr.E.M.(Geol.)	IIIf
246	Pre-Cambrian Geology		3	Elective	1255
247	Geol. and Exploration of Lak				
	Superior Region	•• 3	• •	Elective	1258

- IW, 25. GENERAL GEOLOGY. A synoptical treatment of materials of the earth, and of geologic processes. Physiographic, dynamic, structural, and historical geology. JOHNSTON.
- 18w, 19s. ELEMENTS OF PALEONTOLOGY. An introduction to the study of fossil organisms. Lectures supplemented by field excursions. STAUFFER.
- 23f, 24w, 25s. ELEMENTS OF MINERALOGY. The crystal systems; morphological, physical, chemical characters of minerals; occurrence, genesis, and uses of minerals; classifications and description of common minerals; rock minerals, and common rocks. Determinative work in the laboratory, blowpipe analysis, sight identification. GROUT, BROD-ERICK.
- 41f-42w-43s. PALEONTOLOGY. A study of fossil forms with special reference to those of geologic importance; 'faunas and their correlation. STAUFFER.
- 61f. PHYSICAL MINERALOGY. The form, optical and physical properties of minerals; expansion and conductivity; pyro-electricity; hardness, percussion, and etch figures; cleavage and gliding planes. BRODERICK.
- 65f. CRYSTALLOGRAPHY. Projection and geometric relations of crystal planes; crystal nomenclature; the relation of special properties to

morphology. A study of crystal models, crystal drawing, identification of minerals from crystal measurements, and mathematical calculation. BRODERICK.

- 73f. ECONOMIC GEOLOGY. Study of non-metallic minerals of economic value, and discussions of geologic guides to prospecting for these deposits.
- 80w. ADVANCED HISTORICAL GEOLOGY. The sequence of events in geologic history, of interest to the advanced student in mining. STAUFFER.
- 85s. FIELD WORK. About two weeks in June are spent in geologic mapping of selected areas in the iron district of Minnesota. Involves preparation of geologic maps and written reports. JOHNSTON.
- IOI f. PRINCIPLES OF STRATIGRAPHY. Origin and structure of sedimentary deposits; the interpretation of these in relation to paleogeography; field work in connection with Cambrian and Ordovician problems. TIEJE.
- 105f. ELEMENTS OF ROCK STUDY. The occurrence and genesis of igneous, sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and alteration. The classification and methods of identification and description of rocks. GROUT, BRODERICK.
- 106w. PETROGRAPHY. The identification and study of minerals and rocks by optical methods; the study of igneous rocks, crystalline schists, and metamorphic rocks. The origin and classification of rocks. GROUT, BRODERICK.
- IIIF. ORE DEPOSITS. The nature, distribution, and genesis of ore deposits of the United States; relations of ore deposits to geologic structure; the deformation and superficial alteration of ore deposits. EMMONS.
- 112w. GEOLOGY OF PETROLEUM. The nature, origin, and accumulation of petroleum; discussion of the various oil fields of the world. EMMONS.
- 1135. PROBLEMS IN ORE DEPOSITS. Field excursions, map work, lectures on field and laboratory methods. EMMONS.
- 124w, 125s. STRUCTURAL AND METAMORPHIC GEOLOGY. The conditions, processes, and results of metamorphism; structural features resulting from deformation under varying conditions of load. JOHNSTON.
- 131f, 132w, 133s. ADVANCED PETROLOGY. Advanced optical methods. Criteria for rapid indentification of minerals and rocks. The uses of schedules and tables. Standard rock types. Regional and genetic studies. Petrographic reports. GROUT.
- 137W. TESTING ECONOMIC MINERALS. Methods of determining quality of mineral deposits, described and illustrated by laboratory tests of coal, oil, building stone, and metallic ores. GROUT.

- 140w, 141s. APPLIED PETROGRAPHY. Determination of ores and gangue minerals. Microscopic studies of paragenesis of ores and other mineral associations. Practical problems in mining and geology settled by microscopic and optical examinations. GROUT.
- 144w, 145s. CONSTRUCTION AND INTERPRETATION OF GEOLOGIC MAPS. Methods of geologic examination; problems in construction and interpretation of geologic maps and sections.
- 1508. FIELD GEOLOGY. Detailed, systematic work conforming with standards of official surveys. Preparation of geological maps, structure sections, reports; paragenesis of ores and their relations to geologic structures. Field for 1920, Black Hills, South Dakota. Reports to be written week before college opens in fall. EMMONS, JOHNSTON.
- 151f, 152w, 153s. Advanced General Geology. Geologic processes and their results; development of the North American continent. STAUFFER.
- 166w, 167s. MINERALOGRAPHY. Methods of studying opaque minerals and the application of the methods to problems in ore genesis and history. BRODERICK.
- 246. PRE-CAMBRIAN GEOLOGY. The problems of pre-Cambrian correlation and structure; the pre-Cambrian stratigraphy of North America. Given in alternate years. JOHNSTON.
- 247. GEOLOGY AND EXPLORATION OF LAKE SUPERIOR REGION. The geology of the Lake Superior iron districts. Methods used in the exploration of iron ore; interpretation of drill cores; cartographic expressions of drill data; models of drilled areas. Principles of magnetic surveying. JOHNSTON.

GERMAN

Professor CARL SCHLENKER; Assistant Professors JAMES DAVIES, SAM-UEL KROESCH, WALTER R. MYERS; Instructor LYNWOOD DOWNS.

COURSES

No.	Title	Rec. hrs.	Required of	Prereq. courses
*4f, 5w, 6s 7f 15f *25w, 26s *28w, 29s	Beginning Intermediate Narrative Prose Elementary Scientific Advanced Chemical	···· 3 ···· 4 ···° 3	Jr.E.M.(Geol.) Jr.E.M.(Geol.) Elective Elective Elective	4-5-6 or equiv. 2 yrs. prep. 7 15
		775 5 71.		

* All quarters must be completed before credit is given in any one quarter.

4f-5w-6s. BEGINNING FOR MINERS. Pronunciation, grammar, conversation; selected readings in easy prose. SCHLENKER, DOWNS.

7f. INTERMEDIATE FOR MINERS. Continuation of Course 4-5-6.

15f. NARRATIVE PROSE. Reading, grammar review. KROESCH, DOWNS.

- 25w, 26s. ELEMENTARY SCIENTIFIC. Readings from simple expository German. Selections from works on chemistry. DAVIES, DOWNS.
- 28w, 29s. Advanced Chemical German. Selections from more difficult works on chemistry. Schlenker, Myers.

METALLURGY

Professors William R. Appleby, Peter Christianson, Levi B. Pease; Associate Professor Oscar E. Harder; Instructors Ralph L. Dowdell, Elwyn L. Smith.

COURSES

		Lec.	Lab.		
No.	Title	hrs.	hrs.	Required of	Prerequisite courses
IW	Assaying	4		All fr.	Chem. 1f, Geol. 23f
2W	Assaying Lab		8	All fr.	Chem. 1f, Geol. 23f
3f	General Metallurgy	3		Soph.E.M.&Met.E.	1w, 2w, Chem. 3s
4 W	Metallurgy of Pig Iron	3		Soph.E.M.&Met.E.	3f
5s	Met. Wrought Iron and	Ŭ			
0 -	Steel	3		Soph.E.M.&Met.E.	4 W
6f	Ore-Testing	2		Sr.E.M.&Met.E.	1075
7 f	Ore-Testing Lab		8	Sr.E.M.&Met.E.	1075
8w	Spec. Prob. in Ore-Test.		4	Sr.E.M.&Met.E.	1075
9S	Spec. Prob. in Ore-Test.		8	Sr.E.M.&Met.E.	1075
IOW	Advanced Metallurgy	4	6	Sr.Met.E.	1075
IIS	Advanced Metallurgy	4	6	Sr.Met.E.	1075
12f	Ore-Dressing	3		All jr.	Phys. 5s, Geol. 25s
I 3 W	Ore-Dressing	3		All jr.	Met. 12f, 14f
14f	Ore-Dressing Lab		4	Jr.Met.E.	Phys. 5s, Geol. 25s
I 5 W	Ore-Dressing Lab		4	Jr.Met.E.	Met. 12f, 14f
16s	Ore-Dressing Lab		6	Jr.Met.E.	Met. 13w, 15w
17S	Ore-Dressing Lab		6	Jr.E.M.&E.M.Geol.	Met. 13w
18f	Thesis in Metallurgy		8	Sr.Met.E.	Satisfactory comple-
					tion of jr. year
19W	Thesis in Metallurgy		18	Sr.Met.E.	18f
205	Thesis and Specifications		18	Sr.Met.E.	19W
215	Field Work in Met		**	Jr.Met.E.	Same as 18f
22W	Mechanical Technology	3		Mech. Engineers	
105f	Met. of Base Metals	4		Jr.E.M.&Met.E.	3f
106w	Met. of Base Metals	4		Jr.E.M.&Met.E.	105f
107S	Met. of Precious Metals	4		Jr.E.M.&Met.E.	106w
108f	Electrometallurgy	3		Sr.Met.E.	1075
153f	Mphy., Long Course	3	4	Jr.Met.E.	Chem. 20w, Phys. 5s
154W	Mphy., Long Course	3	4	Jr.Met.E.	153f
1555	Mphy., Long Course	3	4	Jr.Met.E.	154W
156w	Mphy. for Engineers	2	4	Elective	
1575	Adv. Mphy. for Engrs	2	4	Elective	156w
159f	Dental Metallography	3		Elective	
160s	Mphy. for Chemists	2	3	Jr. Chem.	Chem. 20w
161f	Adv. Mphy. for Chem	2	3	Elective	160s
162W	Adv. Mphy. for Chem	2	3	Elective	160s

DEPARTMENTAL STATEMENTS

		Lec. or Lab	
No.	Title	rec. hrs. hrs.	Required of Prereq. courses
163ť	Adv. Metallography	To be ar Elective	153f, 154w, 155s, or equivalent
164W	Adv. Metallography	To be ar Elective	
165s	Adv. Metallography	To be ar Elective	
201f	Adv. Mphy., Gr. students	To be ar Elective	
202W	Adv. Mphy., Gr. students	To be ar Elective	
2035	Adv. Mphy., Gr. students	To be ar Elective	

- IW. ASSAYING. The determination of values of ores, metallurgical products by the fire method. Lectures and recitations. APPLEBY, CHRIS-TIANSON.
- 2w. Assay LABORATORY. Practical determination of gold, silver, lead, and tin by the fire method. CHRISTIANSON, PEASE, SMITH.
- 3f. GENERAL METALLURGY. Combustion, fuels, refractory materials, furnaces and fluxes. Lectures and recitations. CHRISTIANSON.
- 4w. METALLURGY OF PIG IRON. General principles of iron blast furnace practice. Construction of furnace, handling of stock, and products, principles of regulation. Lectures and recitations. CHRISTIANSON.
- 55. METALLURGY OF WROUGHT IRON AND STEEL. General principles involved in the production of wrought iron and steel. Lectures and recitations. CHRISTIANSON.
- 6f. ORE-TESTING. General principles involved in determining the best method of extraction, including amalgamation, concentration, cyanidation, roasting, etc. Lectures and recitations. CHRISTIANSON.
- 7f. ORE-TESTING LABORATORY. Practical determination of extraction and distribution of values in mill and metallurgical products. Methods of calculation. CHRISTIANSON and Assistants.
- 8w. SPECIAL PROBLEMS IN ORE-TESTING. Continuation of Course 7f. Practical determinations for regulating metallurgical operations. PEASE.
- 95. SPECIAL PROBLEMS IN ORE-TESTING. Continuation of Course 8w. PEASE.
- 10w. Advanced Metallurgy. Pyrometry, calorimetry, and metallurgical calculations to determine heat balance and heat distribution. Lectures and laboratory work. CHRISTIANSON.
- **IIS.** Advanced Metallurgy. Design of furnaces, conferences and laboratory work. CHRISTIANSON.
- 12f. ORE-DRESSING. Crushing, sizing, classification, and concentration of ores. Lectures and recitations. SMITH.
- 13w. ORE-DRESSING. Continuation of Course 12f. SMITH.
- 14f. ORE-DRESSING LABORATORY. Practical examination of ores and the use of ore-dressing machinery. SMITH.

- 15W. PRACTICAL PROBLEMS IN ORE-DRESSING. SMITH.
- 16s. ORE-DRESSING LABORATORY. Continuation of Course 15w. SMITH.
- 17s. ORE-DRESSING LABORATORY. Short course in the laboratory use of ore-dressing machinery. SMITH. *
- 18f. THESIS IN METALLURGY. Conferences to select suitable problem together with preliminary laboratory work on problem selected. CHRIS-TIANSON.
- 19w. Continuation of Course 18f. CHRISTIANSON.
- 20s. Completion of thesis including specifications covering installation of a plant. CHRISTIANSON.
- 215. FIELD WORK IN METALLURGY. Study of metallurgical operations at smelters and mills. Detail reports are required covering plants visited. CHRISTIANSON, PEASE.
- 22W. MECHANICAL TECHNOLOGY. Lectures on mining, metallurgy, and treatment of metals used in construction. CHRISTIANSON, PEASE.
- 105f. METALLURGY OF THE BASE METALS. Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining. Lectures and recitations. PEASE.
- 106w. METALLURGY OF BASE METALS. Continuation of Course 105f. PEASE.
- 1075. METALLURGY OF THE PRECIOUS METALS. Principles involved and methods used in the extraction of gold, silver, and other precious metals. Lectures and recitations. PEASE.
- 108f. ELECTROMETALLURGY. Application of electricity to production of heat for smelting ores and refining metals. Costs of fuel and electricity for heating, relative efficiencies of electric and fuel furnaces. Construction of high-temperature furnaces and commercial plants. CHRISTIANSON.
- 153f, 154w, 155s. METALLOGRAPHY. (Long course for Metallurgical Engineers.) Theory of metallic alloys. Metallographic technic. Properties of metals and alloys. Metallography of iron and steel and commercial alloys. Technical metallography. Laboratory work. HARDER, DOWDELL.
- 156w. METALLOGRAPHY FOR ENGINEERS. Principles of metallography, including pyrometry, thermal analysis, constitution diagrams, microscopic and photomicrographic technique; metallography and heat treatment of iron and steel. Laboratory work. HARDER, DOWDELL.
- 1575. ADVANCED METALLOGRAPHY FOR ENGINEERS. Continuation of 156w. Metallography of alloy steels, tool steels, high-speed tool steels, and important non-ferrous alloys; metallography applied to engineering

practice and specifications. Outside reading and special reports. Laboratory work. HARDER, DOWDELL.

- 159f. DENTAL METALLOGRAPHY. Study of the dental alloys from the standpoint of metallography. HARDER.
- 160s. METALLOGRAPHY FOR CHEMICAL STUDENTS. Metallography, including constitution diagrams, preparation and standardization of thermocouples, preparation and thermal analysis of alloys, their microscopic examination and making photomicrographs; typical alloy systems such as iron-carbon (steel and cast iron); some non-ferrous alloys. Laboratory work. HARDER, DOWDELL.

Note: This course will be offered in both the fall and spring quarters in 1920-21.

- 161f. ADVANCED METALLOGRAPHY FOR CHEMICAL STUDENTS. Metallography and heat treatment of iron and steel, including alloy steels, commercial uses of various steels, and engineering specifications. Laboratory work. HARDER, DOWDELL.
- 162w. Advanced Metallography for Chemical Students. Metallography of the non-ferrous metals with a study of the constitution diagrams, properties, and uses of important commercial alloys. Laboratory work. HARDER, DOWDELL.
- 163f, 164w, 165s. ADVANCED METALLOGRAPHY. Technical and scientific research. The study of steel rails, automobile and locomotive parts, tool steels, etc. Special problems in metallography with outside reading. Seminar work on the recent advances in metallography. HARDER.
- 201f, 202w, 203s. Advanced Metallography for Graduate Students. Intended primarily for research work. Harder.

MILITARY SCIENCE AND TACTICS

Professor ALBERT G. GOODWYN, Captain, Infantry, U.S.A., Chairman; Assistant Professors BEN W. FEILD, Captain, Infantry, U.S.A.; LAURENCE T. WALKER, Captain, C.A.C., U.S.A.; LEE R. WATROUS, JR., Captain, C.A.C., U.S.A.; EDGAR B. MOOMAU, IST Lieutenant, Infantry, U.S.A.; HARVEY G. THOMAS, IST Lieutenant, U.S.A., Retired; Instructors JOEL R. BAKER, Master Signal Electrician, Signal Corps, U.S.A.; ALFRED BRANDT, Regimental Sergeant Major, Infantry, U.S.A.; KENNA B. CALDWELL, Sergeant, Coast Artillery Corps, Unassigned, U.S.A.; AUBREY R. DUNKUM, IST Sergeant, Coast Artillery Corps, Unassigned, U.S.A.; WILLIAM FINKE, IST Sergeant, Coast Artillery Corps, Unassigned, U.S.A.; Infantry, U.S.A.; MILLIAM FINKE, IST Sergeant, Coast Artillery Corps, Unassigned, U.S.A.; MILLIAM FINKE, IST Sergeant, Infantry, U.S.A., Retired; U.S.A., Infantry, U.S.A., Retired; WILLIAM L. HOGAN, IST Sergeant, Coast

SCHOOL OF MINES

Artillery Corps, Unassigned, U.S.A.; INGVALD M. JOHNSON, Ist Sergeant, Infantry, Unassigned, U.S.A.; JOSEPH LEES, Ist Sergeant, Infantry, U.S.A., Retired; JOHN MCWILLIAMS, Ist Sergeant, Infantry, U.S.A., Retired; WILLIAM G. PALMS, Sergeant, Infantry, Unassigned, U.S.A.

COURSES

No.	Title	Hrs.	Required of	Prereq. courses
t	First-year Basic Course R.O.T.C.	3	†All fr.	None
2a	Second-year Basic Course R.O.T.C.,			
	Infantry	3	*Soph.	I
sp	Second-year Basic Course R.O.T.C.,			
	Coast Artillery	3	Soph.	I
2C	Second-year Basic Course R.O.T.C.,			
	Signal Corps	3	Soph.	I

* Work in military science and tactics for sophomores will open on Friday, September 17, at 8:30 a.m., and continue for ten days. Satisfactory completion of Course 2a, 2b, or 2c at that time is required of all sophomores.

This course applies only to sophomores, who are required to leave the following May I for field work.

† Must be legally eligible for enrollment in Reserve Officers' Training Corps.

MINE PLANT AND MECHANICS

Professor Elting H. Comstock; Assistant Professor Anders J. Carlson; Instructor James C. Sanderson.

COURSES

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
īf	Algebra and Solid Geometry	6		B fr.	
2f	Algebra	6		A fr.	
35	Algebra	••• 4		B fr.	ıf
4W	Trigonometry	6		All fr.	
55	Analytical Geometry	6		All fr.	4W
6f	Calculus	••• 4		All soph.	5 S
$7 \mathrm{W}$	Calculus	••• 3		All soph.	6f
8s	Calculus	6		All soph.	7 W
9f	Mechanics	• • • 5		Jr.E.M.&Met.E.	8s
IOW	Mechanics of Materials	••• 5		Jr.E.M.&Met.E.	9f
IIS	Mechanics of Materials	5		Jr.E.M.&Met.E.	IOW
12f	Mine Plant	6		Jr.E.M.&Met.E.	8s
13W	Mine Plant	6		Jr.E.M.	12f
145	Mine Plant	6		Jr.E.M.	I 3 W
I 5W	Metallurgical Plant	3		Jr.Met.E.	12f
16s	Metallurgical Plant	3		Jr.Met.E.	15W
17f	Hydraulics and Water-Power	5	2	Sr.E.M.&Met.E	. 9f
18f	Engineering Construction		8	Sr.E.M.	IIS
19W	Mine Plant Design		9	Sr.E.M.	18f
205	Mine Plant Design		12	Sr.E.M.	19W

If. ALGEBRA AND SOLID GEOMETRY. Equations, involution and evolution, theory of exponents, surds, quadratic equation, theory of logarithms,

determinants. Demonstrations of most important theorems of solid geometry. Volumes, approximate volumes, prismoidal formula, etc. SANDERSON.

- 2f. ALGEBRA. Functions, functional notation, factor and remainder theorems, factors and values of functions, development of functions, progressions, series, theory of equations, permutations and combinations, theory of logarithms, determinants. COMSTOCK, SANDERSON.
- 38. ALGEBRA. Continuation of 1f. Functions, functional notation, factor and remainder theorems, factors and values of functions, development of functions, progressions, series, theory of equations, permutations and combinations. SANDERSON.
- 4w. TRIGONOMETRY. Trigonometric ratios, right triangles, definitions of trigonometric functions, analytic relations, trigonometric equations, etc., solution of spherical triangles. COMSTOCK, SANDERSON.
- 55. ANALYTICAL GEOMETRY. Systems of coördinates, loci, equations, properties of straight line, transformation of coördinates, equations and properties of conics, equations of second degree, higher plane curves, space coördinates, point, plane, quadric surfaces, etc., empirical equations, graphic algebra. SANDERSON.
- 6f, 7w, 8s. CALCULUS. Differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, expansion of functions, indeterminate forms, partial derivatives, change of variable, elementary integration, undetermined coefficients, rationalization, formulas of reduction, some differential equations of mechanics. SANDERSON.
- 9f. MECHANICS. Composition and resolution of forces, laws of equilibrium, practical applications, rectilinear motion, circular motion, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy. CARLSON.
- 10w, 11s. MECHANICS OF MATERIALS. Mechanical and elastic properties of materials of construction; beams, columns, shafts, hollow cylinders and spheres, rollers, plates; theory of internal stress; reinforced concrete. CARLSON.
- 12f, 13w, 14s. MINE PLANT. Discussion of the machinery and appurtenances employed in the equipment of mines. Air compression, rock drills, mechanical features of hoisting, pumping, ventilation, underground transportation. Electricity applied to mining. COMSTOCK.
- 15w, 16s. METALLURGICAL PLANT. Power, air, and water supply for metallurgical plants. Comstock.
- 17f. HYDRAULICS AND WATER-POWER. Laws of the equilibrium, pressure and flow of liquids, estimation of power to be developed at a power

site, dams and appendages, theory of water wheels and turbines, speed control, power-house equipment, transmission. CARLSON.

- 18f. ENGINEERING CONSTRUCTION. Theory of structures, loading, analytic and graphic resolution of stresses in framed structures, stresses in mining structures, design of mining structures. CARLSON.
- 19w, 20s. MINE PLANT DESIGN. A study of power possibilities, costs, etc., and designs of a power plant, surface equipment, and structures for a mine. COMSTOCK.

MINING

Associate Professor Walter H. PARKER.

COURSES

	Le	ect. or	Lab.		
No.	Title re	c. hrs.	hrs.	Required of	Prerequisite courses
15	Introductory Mining	4		All soph.	
2 f	Exploration	5		All jr.	IS
3w	Tunneling	5	• •	All jr.	2f
4S	Mining Methods	5	• •	All jr.	3W
5s	Practical Mining	., 2	wks.	All jr. S	atisfactory completion
					of jr. yr.
6f	First Aid		*	All jr.	
51f	Mine Rescue		*	All sr.E.M.&E.M.(Ge	eol.)
52f	Mining Reports	5		All sr.E.M.&E.M.(Ge	eol.) 4s
53W	Mining Problems	5		All sr.E.M.&E.M.(G	eol.) 52f
54s	Mining Law	5		All sr.E.M.&E.M.(G	eol.) 53w
55f	Thesis	• •	2	All sr.E.M.	4s
56w	Thesis		12	All sr.E.M.	55 f
57s	Thesis	••	12	All sr.E.M.	56w

* 15 hours (1 week).

- 15. INTRODUCTORY MINING. Introductory mining course, preparatory to sophomore field trip. PARKER.
- 2f. EXPLORATION. Occurrence of ore-bodies, prospecting, exploration, boring, explosives, blasting, and quarrying. PARKER.
- 3w. TUNNELING. Explosives, drilling, tunneling, drifting, shaft-sinking and raising. PARKER.
- 4s. MINING METHODS. Underground mining methods and support of underground excavations. PARKER.
- 55. PRACTICAL MINING. Study of mining operations. Mine plant and mining work in one or more mining camps. PARKER, COMSTOCK.
- 6f. FIRST AID. Course in first aid to the injured, given by the staff of the United States Bureau of Mines car.
- 51f. MINE RESCUE. Course in mine rescue, given by the staff of the United States Bureau of Mines car.

- 52f. MINING REPORTS. Preparation of one or more mining reports, from data supplied by the mining department; open-pit work, quarrying, placer mining, hydraulic mining and dredging. PARKER.
- 53w. MINING PROBLEMS. Coal mining methods, mine drainage, mine ventilation, mine transportation, mine sanitation, mine hygiene, cost accounting, and mine examination. PARKER.
- 54s. MINING LAW. Course in mining law, mine management and economics of mining. PARKER.
- 55f. THESIS. Preparatory work on the mining thesis. PARKER.
- 56w. THESIS. Preparation of an original thesis on some mining project, covering the exploration and development of a mining property. PARKER.
- 57s. THESIS. Completion of thesis project. PARKER.

* MINING ENGINEERING

Associate Professor Edwin M. LAMBERT.

COURSES

			Lec.	or	Lab.		
No.		Title	rec.	hrs,	hrs.	Required of	Prereq. courses
rf	Mine	Surveying		3		All soph.	Math. 4w
2W	Mine	Surveying		3		All soph.	II
3S	Mine	Surveying		3	4	All soph.	2W
4s	Field	Work		4.	7 wks.	All soph.	3S
5W	Mine	Mapping			6	All jr.	4S
6s	Mine	Mapping			6	All jr.	5W

- If-2w-3s. MINE-SURVEYING. Theory and problems in mine-surveying including land subdivision, stadia measurements, triangulation, railroad curves and cross-sections, computation of areas by coördinates; differential leveling, topographic map reading, solar observations, shaft plumbing, underground traversing and leveling. LAMBERT.
- 45. FIELD WORK. Practice in general plane surveying during the month of May. Practice in underground surveying during the first three weeks of June. This work is given on the iron ranges of Minnesota, LAMBERT, CARLSON.
- 5w-6s. MINE-MAPPING. Mine-mapping in accordance with prevalent practice in mining districts. Ore and stripping estimates and mine maps based on Mesabi Range practice. CARLSON.

PHYSICS

Professors HENRY A. ERIKSON, ANTHONY ZELENY; Professorial Lecturer LOUALLEN F. MILLER.

SCHOOL OF MINES

COURSES

No.	Title *	Lec. rec.		Lab. hrs.	Required of	Prereq. courses
23f	Elements of Mechanics		- 3		All soph.	Math. 5s
24Í	Mechanics Laboratory			2	All soph.	With 23f
43W	Heat		3		All soph.	23f
44W	Heat Laboratory	• •	• •	2	All soph.	24f and with 43w
	Magnetism and Electricity					23f
64s	Magnetism and Electricity Lab	• •	• •	2	All soph.	24f and with 63s

- 23f. ELEMENTS OF MECHANICS AND SOUND. Mechanics of solids, fluids, wave motion, and sound. A study of the simpler fundamental principles. First part of a general Course 23, 43, 53, 63. Course 24 should be taken in conjunction with this course. ERIKSON.
- 24f. ELEMENTS OF MECHANICS AND SOUND LABORATORY. Measurements in the mechanics of solids, fluids, wave motion, and sound; the laboratory part supplementing Course 23. One two-hour session in the laboratory a week. ERIKSON.
- 43w. HEAT. A study of the principles underlying heat phenomena. Course 44 should be taken in conjunction with this course. MILLER.
- 44w. HEAT LABORATORY. The laboratory part supplementing Course 43. One two-hour session in the laboratory a week. MILLER.
- 63s. MAGNETISM AND ELECTRICITY. A study of the principles underlying magnetic and electric phenomena. Course 62 should be taken in conjunction with this course. ZELENY.
- 64s. ELECTRICAL LABORATORY. The laboratory part supplementing Course 63. One two-hour session in the laboratory a week. ZELENY.

ROMANCE LANGUAGES

Professors Everett W. Olmsted, Irville C. Le Compte, Colbert Searles; Associate Professors Ruth S. Phelps, Edward H. Sirich; Assistant Professors Francis B. Barton, Jules T. Frelin.

COURSES

No.	Title	Rec. hrs.	Required of	Prereq. courses
*4-5	Beginning French	••• 5	Jr.E.M.(Geol.)	
6-7	Intermediate French	5	Elective	4-5
*30-31-32	Survey French Lit	3	Elective	6-7
*204-205	Beginning Spanish	5	Jr.E.M.(Geol.)	
206-207	Intermediate Spanish	5	Elective .	204-205
*230-231-232	Spanish Literature	3	Elective	206-207

* All quarters must be completed before credit is given in any one quarter. NOTE: Beginning and intermediate courses are offered every quarter.

4, 5. BEGINNING FRENCH. Stress on accurate pronunciation, reading, reading vocabulary, and the essentials of grammar. Daily oral and written exercises (dictation and reproduction in French).

- **0**, **7**. **INTERMEDIATE** FRENCH. French grammar, composition, and reading; increased use of French in the classroom. Selections from modern prose and poetry.
- 30, 31, 32. GENERAL SURVEY OF FRENCH LITERATURE. Lectures, recitations, and assigned readings. Designed to cover the whole period in historical outline. Selections from representative authors.
- 204, 205. BEGINNING SPANISH. Pronunciation, grammar, oral exercises and translation.
- 206, 207. INTERMEDIATE SPANISH. Review of grammar, composition, conversation, and reading.
- 230, 231, 232. SPANISH LITERATURE. Discussions based upon texts and collateral reading.

STUDENTS

1919-1920

SENIORS-16

Ainsworth, Robert E., Minneapolis Arnold, Lewis E., Minneapolis Bailey, A. K., Jr., Minneapolis Barr, J. Carroll, Jr., Pittsburgh, Pa. Clark, Fred E., Minneapolis Copeland, William A., St. Paul Donaghue, Abner J., Minneapolis Edwin, John, Minneapolis Frank, Harry O., Minneapolis Johnson, Axel L., Benson Kersten, Erwin H., Minneapolis Mark, Israel C., Minneapolis Nichols, Clifford R., Buhl Peterson, Clarence D., Minneapolis Raiter, Clifford R., Minneapolis Wheeler, James D., Minneapolis

JUNIORS-20

Abramson, Jake, Minneapolis Butler, Roy G., Beaver Dam, Wis. Carlson, Edwin N., Brainerd Chadbourn, Charles H., Minneapolis Dawson, Loren W., Minneapolis Flom, Frank, Minneapolis Frank, Elden J., Duluth Gandrud, Bennie W., Glenwood Hamernik, F. J., Menominee, Mich. Hope, Lawrence I., Minneapolis Johnsen, Trygve, St. Paul Johnston, Kenneth A., St. Paul Nicholls, William J., Ely Rydlun, Edward G., Minneapolis Sebenius, Carl H., Duluth Sponberg, Edwin C., Hibbing Walz, C. M., Gladstone, Mich. Wenger, Frank B., Grand Rapids, Mich. West, Herbert S., Minneapolis Zanger, Eugene, Minneapolis

Kwong, Shou-Kun, Shanghai, China Le Roy, James, Minneapolis

Lin, Sze Chen, Peking, China

Lovering, Thomas S., St. Paul

SOPHOMORES-36

Adams, Maurice, Moorhead Alger, Leon J., Staples Anderson, Oscar B., Crosby Barker, Clifton T., Excelsior Brenner, Walter W., Minneapolis Chang, Chen Ping, Nanking, China Clay, J. Withers, Minneapolis Echebarria, Luis de Uribe, Bilbao, Spain Friedl, Arthur J., St. Paul Gray, Donald U., Fergus Falls Gross, Forrest C., Duluth Gustafson, Arnold A., Duluth Hansen, Mayer G., Minneapolis Heathcote, William O., Duluth Henkel, H. L., Minneapolis Hoffman, Louis, Minneapolis Johnson, Ralph C., Bemidji Kilp, Raymond, Minneapolis

McKenzie, Frederick R., Adrian Mannerberg, Walter F., Minneapolis Merrill, J. W., St. Paul Moga, Gregory M., St. Paul Olson, Alvin B., Bemidji Patten, Richard C., Minneapolis Plut, Frank J., Crosby Ridgway, R. H., Mandan, N. Dak. Schied, Adolph J., Milwaukee, Wis. Siverson, Garfield C., Minneapolis Smith, Lyle W., Minneapolis Thoeni, Victor T., Wykoff Webster, W. H., Minneapolis Wilson, J. Byron, Minneapolis

FRESHMEN-87

Allen, A. W., Minneapolis Allen, Laurin L., Minneapolis Anderson, Alfred, Crosby Apuli, Waine E., Mountain Iron Ballard, John A., Minneapolis Barker, J. H., Minneapolis Blair, J. V., Winona Beckwith, Gerald H., Blanca, Colo. Brawley, John, St. Paul Brooke, Clinton L., Minneapolis Butler, Robert V., St. Paul Case, Carlos C., Minneapolis Case, Leslie M., Minneapolis Cavanaugh, A. M., Duluth Clement, Charles J., Proctor Conhaim, Howard J., St. Paul Dains, H. F., Jr., Minneapolis DeVaney, Fred D., Minneapolis

Dinmore, Harry C., Jr., St. Paul Dunham, W. C., Anaheim, Cal. Erdman, Charles, Minneapolis Erickson, Arthur C., Virginia Foss, Adolph Lee, Frazee Gallagher, Luke J., Faribault Gerber, William A., St. Paul Gordon, Morris E., Minneapolis Gow, Alexander M., Duluth Grabau, E. L., Bonair, Iowa Graeber, Clyde, Minneapolis Greenberg, Arnold N., St. Paul Griswold, Harland, Duluth Griswold, W. R., Duluth Grover, Willard A., Winona Gudmundson, Staney L., Minneota Hall, H. C., Minneapolis Hawlik, Hartley H., Silver Lake Henderson, Philip J., Excelsior Hezzlewood, George W., Minneapolis Jeffers, G. D., Cresco, Iowa Jelinek, Fred M., New Prague Jensen, Willard C., Minneapolis Johnstone, George, Minneapolis Jones, John B., Minneapolis Kegler, Vern L., Minneapolis Knutson, Clarence J., Little Falls Larsen, Raymond M., Duluth Latendresse, Henry E., Red Lake Falls Levy, Julian H., St. Paul Liddicoat, Roy H., Biwabik Lilly, Richard J., St. Paul Linstrom, John H., Minneapolis

Lucas, John J., Minneapolis Lundquist, O. William, Two Harbors Lust, Harold W., Minneapolis Middleton, John L., Marshall Mooney, Frank E., St. Paul Murphy, Fred M., Virginia Opdahl, Carl, Sheldon, N. Dak. Pabst, Henry Adam, Hibbing Person, Virgil H., Minneapolis Queneau, Roland B., Minneapolis Roberts, Paul E., Freeborn Russell, Charles B., Winton Searles, John N., Mazeppa Segal, Julius, Minneapolis Sieux, Joseph, Chicago, Ill. Sjolinder, Anthony O., St. Paul Smith, Donald K., Minneapolis Smith, Wayland H., Minneapolis Stewart, James L., Minneapolis Strunk, William, Minneapolis Sundeen, Ludvig J., Litchfield Swenson, Clifford H., Braham Thellin, Herbert E., Crosby Thompson, Harry S., St. Paul Tollefson, Everett H., Mabel Trulander, William, Minneapolis Vivian, Edgar, Duluth Wachtel, Dean E., Duluth Weeks, Merwyn B., Detroit Wilcox, Fred H., Minneapolis Winter, Morse W., Winona Wolfer, Donald H., St. Paul Wrbitzky, Harry M., Silver Lake Wright, Donald R., Luverne

•

••

.

1-2.

M660ZMi 1921/22

1021

UNIVERSITY CALENDAR

1921-1922

1921					
September	16	Friday	Sophomores, School of Mines, report for military drill, 8:30 a.m.		
September	17	Saturday	Payment of fees closes, except for new students		
September	20	Tuesday	Juniors and seniors, School of Mines, report for completion of field work		
September	23-27	Week	Examinations for removal of conditions and entrance examinations; see below		
September	26-27		Registration days		
September	27	Tuesday	Payment of fees for new students closes		
September	28	Wednesday	Fall quarter begins, 8:30 a.m.		
October	20	Thursday	Senate meeting, 4:30 p.m.		
November	24	Thursday	Thanksgiving Day; a holiday		
December	15	Thursday	Senate meeting, 4:30 p.m.		
December	21	Wednesday	Fall quarter ends, Christmas vacation begins, 5:20 p.m.		
1922					
January	4	Wednesday	Christmas vacation ends, winter quarter begins, 8:30 a.m.		
February	16	Thursday	Senate meeting, 4:30 p.m.		
February	22	Wednesday	Washington's Birthday; a holiday		
March	23	Thursday	Winter quarter ends, spring vacation begins, 5:20 p.m.		
March	29	Wednesday	Spring vacation ends, spring quarter begins, 8:30 a.m.		
May	I	Monday	Field work for sophomores and juniors in School of Mines begins		
May	18	Thursday	Senate meeting, 4:30 p.m.		
May	30	Tuesday	Memorial Day; a holiday		
June	II	Sunday	Baccalaureate service		
June	13	Tuesday	Spring quarter closes, 5:20 p.m.		
June	14	Wednesday	Fiftieth annual commencement		
June	17-19		Registration days for summer session		
June	20	Tuesday	Summer session begins		
July	29	Saturday	Summer session closes		
Program of Supplementary Examinations					

Friday,	Sept. 23	9-12 a.m.	Physics
		2-5 p.m.	Chemistry, experimental engineering
Saturday,	Sept. 24	9-12 a.m.	Mathematics and mechanics
		2-5 p.m.	Drawing and descriptive geometry
Monday,	Sept. 26	9-12 a.m.	Metallurgical subjects
		2-5 p.m.	Electric power
Tuesday,	Sept. 27	9-12 a.m.	Geology and mineralogy
		2-5 p.m.	Mining subjects

THE SCHOOL OF MINES

FACULTY

LOTUS DELTA COFFMAN, Ph.D., President

WILLIAM WATTS FOLWELL, LL.D., President Emeritus

CYRUS NORTHROP, LL.D., President Emeritus

WILLIAM R. APPLEBY, M.A., Dean, and Professor of Metallurgy

THOMAS M. BRODERICK, Ph.D., Assistant Professor of Geology

ANDERS J. CARLSON, C.E., Assistant Professor of Mine Plant and Mechanics

PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy

ELTING H. COMSTOCK, M.S., Professor of Mine Plant and Mechanics

JAMES DAVIES, Ph.D., Assistant Professor of German

WILLIAM H. EMMONS, Ph.D., Professor of Geology and Mineralogy

HENRY A. ERIKSON, B.E.E., Ph.D., Professor of Physics

ROBERT W. FRENCH, B.S. in C.E., Assistant Professor of Drawing and Descriptive Geometry

ISAAC W. GEIGER, Ph.D., Assistant Professor of Chemistry

FRANK F. GROUT, M.S., Ph.D., Professor of Geology and Mineralogy

OSCAR E. HARDER, Ph.D., Associate Professor of Metallography

RALPH HOUSE, Ph.D., Associate Professor of Romance Languages

WILLIAM H: KIRCHNER, B.S., Professor of Drawing and Descriptive Geometry

RAYMOND E. KIRK, M.S., Assistant Professor of Chemistry

EDWIN M. LAMBERT, M.E., Associate Professor of Mining Engineering

IRVILLE C. LECOMPTE, Ph.D., Professor of Romance Languages

LOUALLEN F. MILLER, B.S., M.A., Professorial Lecturer in Physics

EVERETT W. OLMSTED, Ph.D., Professor of Romance Languages

WALTER H. PARKER, E.M., Associate Professor of Mining

LEVI B. PEASE, M.S., Professor of Metallurgy

RUTH S. PHELPS, M.A., Associate Professor of Romance Languages

WILLIAM T. RYAN, E.E., Associate Professor of Electrical Engineering

FRANK B. ROWLEY, M.E., Professor of Mechanical Engineering and Director of Experimental Engineering Laboratories

JAMES C. SANDERSON, Ph.D., Assistant Professor of Mine Plant and Mechanics

CARL SCHLENKER, B.A., Professor of German

COLBERT SEARLES, Ph.D., Professor of Romance Languages

GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Professor of Electrical Engineering

CHARLES F. SHOOP, B.S., Associate Professor of Mechanical Engineering CHARLES F. SIDENER, B.S., Professor of Chemistry

M. CANNON SNEED, Ph.D., Associate Professor of Chemistry

CLINTON R. STAUFFER, B.S., Ph.D., Professor of Geology

GIRARD STURTEVANT, Colonel, Infantry, U.S.A., Professor of Military Science and Tactics

ANTHONY ZELENY, M.S., Ph.D., Professor of Physics IRA S. ALLISON, B.A., Instructor in Geology LEON ARCHIBALD, B.S., Instructor in Drawing and Descriptive Geometry RALPH L. DOWDELL, Met.E., Instructor in Metallography JOHN W. GRUNER, B.A., M.S., Instructor in Geology LOUIS S. HEILIG, E.M., Instructor in Mining ERWIN H. KERSTEN, E.M., Instructor in Metallurgy COWDEN LAUGHLIN, Ph.D., Instructor in German NORVILLE C. PERVIER, M.S., Instructor in Chemistry ORRIN W. POTTER, M.E., Instructor in Drawing and Descriptive Geometry BURTON J. ROBERTSON, E.E., Instructor in Experimental Engineering LANDON A. SARVER, M.A., Instructor in Chemistry GEORGE M. SCHWARTZ, M.A., Instructor in Geology ELWYN L. SMITH, B.S., Instructor in Metallurgy GEORGE W. SWENSON, B.S. in E.E., Instructor in Electrical Engineering GEORGE A. THIEL, M.A., Instructor in Geology W. COURTNEY WERNER, B.A., Instructor in Geology

H. B. WILCOX, B.S., M.A., Instructor in Mathematics and Mechanics

ELIZABETH B. HENDERSON, Librarian

GENERAL INFORMATION

The School of Mines was established by the Board of Regents in 1888, upon recommendation of the general faculty of the University. The buildings and laboratories of the school are located on the main campus of the University. The mining districts of Minnesota are within a few hours, by rail, of Minneapolis. The heartiest coöperation exists between the various mine managements and the school, so that the mining properties are at all times open to parties from the school for observation and study trips. Practical surveying, geological field work, and underground work are carried on in one or more of the districts. Students in the School of Mines have, therefore, all the advantages afforded by a large university combined with ample opportunity for field observation and experience.

The School of Mines occupies the new building provided by the Legislature of 1913. In the basement are the assay and electro-metallurgical laboratories, together with machinery room, instrument room, balance-room, furnace-rooms, and necessary storerooms. On the first floor are the administrative offices, and offices and lecture-rooms of the departments of Metallurgy and Mine Plant and Mechanics. On the second floor are the offices, lecture-rooms, and drafting-rooms of the Department of Mining, the ore-dressing laboratory, and the library of the school. On the third floor are the offices, laboratories, and lecture-rooms of the Department of Metallography, the Department of Mining Engineering, junior draftingroom, photographic darkrooms, blue-printing room, and offices and computing rooms for the branch of the experiment station serving the tax commission.

DEGREES

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degrees of Engineer of Mines (E.M.), Engineer of Mines in Geology [E.M.(Geology)], and Metallurgical Engineer (Met.E.) respectively.

The degree of Metallurgical Engineer may be conferred upon a candidate who received the degree of Engineer of Mines in four years, and vice versa, provided such candidate completes an additional year's work at the school and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and Architecture, and in the School of Chemistry, who contemplate taking a degree in this school after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thoro courses in mechanics, mathematics, surveying, physics, chemistry, and the necessary theory and practice of structural, mechanical, and electrical engineering.

(a) Geology—to determine the location of the ore. (b) Mineralogy—to determine its nature. (c) Assaying—to determine whether or not it has value for treatment. (d) Mining engineering—to furnish material for treatment. (e) Mine Plant—to provide the physical equipment for mining and treating the ore. (f) Ore-testing—to determine best methods of treatment. (g) Ore-dressing—to furnish products for metallurgical treatment. (h) Metallurgy—to smelt and refine ores and ore-dressing products; reduction to metals. (i) Metallography—to study metals and their alloys.

EXPERIMENT STATION

The School of Mines Experiment Station has been recently established to promote the development of the mining and mineral resources of the state; to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates for the tax commission, and to do such other work along the lines above outlined as may be requested by other state departments. Coöperation has been effected with the United States Bureau of Mines, the United States Geological Survey, the Minnesota Geological Survey, and the School of Chemistry.

The experiment station is prepared to assist citizens interested in these lines of work, and to assay specimens of ore, rocks, clays, and minerals found within the state, free of charge.

In submitting samples the sender must state the exact location in which each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the office of the station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, the University of Minnesota, Minneapolis, Minnesota.

SCHOOL OF MINES

ADMISSION

The courses leading to the degrees of Engineer of Mines, Engineer of Mines (in Geology), and Metallurgical Engineer may be completed in four years.

Freshmen will be divided into two sections as follows:

a. Those entering with credits in higher algebra and solid geometry.

b. Those entering without credits in higher algebra and solid geometry. Students in section b will carry a special course in mathematics during their freshman year.

Details as to admission and entrance requirements, description of subjects accepted for admission, and list of fees and expenses will be found in the bulletin of general information, which will be sent to any address upon application to the registrar, the University of Minnesota, Minneapolis.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

ADMISSION TO ADVANCED STANDING

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrolment Committee of the School of Mines.

FEES

Tuition fees (per quarter)	
Residents of Minnesota\$	30,00
Non-residents	40.00
Deposit (first quarter only)	5.00
Military deposit (required of all students taking drill)	10.00
Minnesota Union (per quarter)	I.00
Post-office box (per quarter)	.20
Special fees	
Examination for removal of condition	1.00
Examinations for credit (after the first six weeks in residence)	5.00
Special examinations	5.00
Chemistry deposit	5.00

Penalty Fees

Registration penalties.—A penalty fee for late registration, late change of registration, or late payment of fees shall be two dollars (\$2.00) and one dollar (\$1.00) additional for each day of delay after classes begin, provided that no student shall pay more than twelve dollars (\$12.00) of penalty in any given quarter.

GRADUATION

Students completing courses of study to the satisfaction of the faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examination in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least the full year be spent at the University^{*} before such degree shall be granted, and provided the examination in every case be held before a committee of the faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examination for the third quarter. Irregular attendance will debar a student from entering all final examinations.

THESIS

The thesis work is intended to bring in review and connect the work in mining and metallurgy, geology and mineralogy, mechanical and electrical engineering, mathematics and mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of Engineer of Mines; the investigation of a problem in mining geology, for candidates for the degree of Engineer of Mines (in Geology); and the investigation of a metallurgical problem, for candidates for the degree of Metallurgical Engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

Prior to the reopening of field work at the School of Mines, Tuesday, September 20, 1921, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on the project must be under way by December 1. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 30. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the school.

SPECIAL NOTES

Students failing to receive a quarter mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year. Each student must obtain from the registrar his average in all subjects and present himself for supplementary examinations, according to the program on page 3.

Failure of the registrar to notify a student of deficiencies will not be accepted as a reason for neglecting to report for necessary supplementary examinations. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures.

Students failing to pass supplementary examinations will become members of the succeeding class and must register for these subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining, mining engineering, and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

Students failing to receive a quarter mark of 50 per cent in any subject shall not be allowed to pursue any dependent subject.

The faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination for any quarter will be given zero on the examinations.

Students whose absences in any quarter exceed 20 per cent of the scheduled class hours will not be permitted to take examinations without special permission of the faculty.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

During the academic year students will be held responsible for the receipt of official communications sent to them through the University post-office. During the summer vacation they will be held responsible for the receipt of such communications sent to the home address given on registration blank for the preceding academic year, unless formal notification of their correct address is filed with the registrar and the dean.

COURSES OF STUDY

UNIFORM CURRICULUM TO END OF SOPHOMORE YEAR

The courses leading to the degrees of Engineer of Mines, Engineer of Mines (in Geology), and Metallurgical Engineer are uniform for the first two years.

Freshmen will be divided into two sections as follows:

.

a. Those entering with credits in advanced algebra and solid geometry.

b. Those entering without credits in advanced algebra and solid geometry.

Subjects with the prefix a are to be taken by freshmen in section a; those with the prefix b are to be taken by freshmen in section b; and those without prefix are to be taken by students of both sections.

FRESHMAN YEAR

First Quarter

Chemistry 4f or 14f,* General Inorganic, 6 or 9[†] Drawing 11f, Engineering Drawing, 10 a. Mathematics 2f, Algebra, 6 b. Mathematics 1f, Algebra and Solid Geometry, 6 Geology 23f, Elements of Mineralogy, 8 Military Drill

Second Quarter

Chemistry 5w or 15w, General Inorganic, 6 or 9, Chem. 4f or 14f Drawing 12w, Engineering Drawing, 8, Draw. 11f Mathematics 4w, Trigonometry, 6 Metallurgy 1w, Assaying, 4, Chem. 4f or 14f, Geol. 23f Metallurgy 2w, Assaying Laboratory, 8, Chem. 4f or 14f, Geol. 23f Geology 24w, Elements of Mineralogy, 4, Geol. 23f Military Drill

Third Quarter

Chemistry 16s, Qualitative Analysis, 9, Chem. 5w or 15w Drawing 13s, Engineering Drawing, 8, Draw. 12w Mathematics 5s, Analytical Geometry, 6, Math. 4w b. Mathematics 3s, Algebra, 4, Math. 1f Geology 25s, Elements of Mineralogy, 8, Geol. 24w Military Drill

^{*} The suffixes f,w, or s, after the course number indicate the quarter in which a course is offered—fall, winter, or spring quarter respectively. Two or three suffixes indicate that a course is offered in each of the corresponding quarters.

[†] Figure following the descriptive name of a course indicates number of hours per week. Course names following indicate prerequisite courses.

SOPHOMORE YEAR

First Quarter

Drawing 14f, Descriptive Geometry, 3, Draw. 13s, Math. 5s

Geology 105f, Rock Study, 4, Geol. 25s

Mathematics 6f, Calculus, 4, Math. 5s

Metallurgy 3f, General, 3, Met. 1w, 2w, Chem. 16s

Mining Engineering 1f, Mine-Surveying, 3, Math. 4w

Physics 3f, Elements of Mechanics, 3, Math. 5s

Physics 4f, Mechanics Laboratory, 2, Math. 5s

Military Science and Tactics, 2a, 2b, or 2c

Work in military science and tactics for sophomores will open on Friday, Sept. 16 at 8:30 à.m., and continue for ten days. Satisfactory completion of Course 2a, 2b, or 2c, at that time is required of all sophomores. This course applies only to sophomores who are required to leave the following May I for field work.

Second Quarter

Chemistry 28w, Quantitative Analysis, 8, Chem. 16s

Drawing 15w, Drafting, 4, Draw. 14f

Geology 1w, General, 3, Geol. 105f

Geology 106w, Petrography, 4, Geol. 105f

Mathematics 7w, Calculus, 3, Math. 6f

Metallurgy 4w, Met. of Pig Iron, 3, Met. 3f

Mining Engineering 2w, Mine-Surveying, 3, Min. Eng. 1f

Physics 23w, Heat, 3, Phys. 3f

Physics 24w, Heat Laboratory, 2, Phys. 4f

Third Quarter

Geology 2s, General, 7, Geol. 105f

Mathematics 8s, Calculus, 6, Math. 7w

Metallurgy 5s, Wrought Iron and Steel, 3, Met. 4w

Mining 1s, Introductory Mining, 4

Mining Engineering 3s, Mine-Surveying, 7, Min. Eng. 2w

Physics 43s, Magnetism and Electricity, 3, Phys. 3f

Physics 44s, Magnetism and Elec. Lab., 2, Phys. 4f

Mining Engineering 4s, Field Work beginning about May 1, 7 weeks, Min. Eng. 3s

Geology 85, Field Work beginning about June 20, 2 weeks, Geol. 28 Underground Mining Work beginning about July 5

JUNIOR AND SENIOR YEARS

Courses Leading to the Degree of Engineer of Mines

JUNIOR YEAR

First Quarter

Experimental Engineering, M.E. 84f, Elementary Lab. 4, with Mech. 12f Geology 73f, Economic, 3, Geol. 2s, 105f Mechanics of Mechanics 7 Meth 85

Mechanics 9f, Mechanics, 5, Math. 8s

Mechanics 12f, Mine Plant, 6, Math. 8s

Metallurgy 105f, Base Metals, 4, Met. 3f

Metallurgy 12f, Ore-Dressing, 3, Phys. 43s, Geol. 25s

Mining 2f, Exploration, 5, Mining 1s

Mining 6f, First Aid, I week

Second Quarter

Experimental Engineering, M. & M. 144w, Materials-Testing Lab., 4, with Mech. 10w

Mechanics 10w, Mechanics of Materials, 5, Mech. of

Mechanics 13w, Mine Plant, 6, Mech. 12f

Metallurgy 106w, Base Metals, 4, Met. 105f

Metallurgy 13w, Ore-Dressing, 3, Met. 12f

Mining 3w, Tunneling, 5, Mining 2f

Mining Engineering 5w, Mine-Mapping, 6, Min. Eng. 4s

Third Quarter

Mechanics 115, Mechanics of Materials, 5, Mech. 10w

Mechanics 14s, Mine Plant, 6, Mech. 13w

Metallurgy 107s, Precious Metals, 4, Met. 106w

Metallurgy 17s, Ore-Dressing Lab., 6, Met. 13w

Mining 4s, Mining Methods, 5, Mining, 3w

Mining Engineering 6s, Mine-Mapping, 6, Min. Eng. 5w

Metallurgy 21s, Field Work in Metallurgy beginning about May 1, 10 days, satisfactory completion of junior year

Mining 5s, Field Work in Mine Plant and Mining beginning about May 1, 2 weeks, satisfactory completion of junior year

SENIOR YEAR

First Quarter

Electrical Engineering 41f, Electric Power, 5, Phys. 43s

Geology 111f, Ore Deposits, 3, Geol. 73f, 106w

Mechanics 17f, Water Power, 7, Mech. 11s

Mechanics 18f, Engineering Construction, 8, Mech. 11s

Metallurgy 6f, Ore-Testing, 2, Met. 107s

Metallurgy 7f, Ore-Testing Lab. 8, Met. 107s

Mining 52f, Mining Methods, 5, Mining 4s

Mining 51f, Mine Rescue, 1 week

Mining 55f, Thesis, 2, Mining 4s

Second Quarter

Experimental Engineering, M.E., 181w, Advanced Lab., 4, Exp. Eng. M.E. 84f

Geology 112w, Petroleum, 3, Geol. 111f

Geology 80w, Advanced Historical, 3, Geol. 73f

Mechanics 19w, Mine-Plant Design, 9, Mech. 18f

Metallurgy 8w, Special Problems, 4, Met. 107s

Mining 53w, Mine Management, 5, Mining 52f

Mining 56w, Thesis, 12, Mining, 55f

Third Quarter

Geology 113s, Problems in Ore Deposits, 4, Geol. 112w Mechanics 20s, Mine-Plant Design, 12, Mech. 19w Metallurgy 9s, Special Problems, 8, Met. 107s Mining 54s, Mine Administration, 5, Mining 53w Mining 57s, Thesis, 12, Mining 56w

DEPARTMENT OF MINING

The Department is well supplied with samples of the smaller mine equipment, models, drawings, photographs, lantern slides, and mine maps. The lectures treat of prospecting, development, support of excavations, mining methods, mine administration, mining law, and the necessary allied subjects. The courses in mining extend through the sophomore, junior, and senior years.

FIELD WORK IN MINING JUNIOR YEAR

At the end of the junior year students are required to study mine plant and mining methods in one or more mining districts under the direction of members of the faculty. This work begins about May I, and not over three weeks will be devoted to it. The work is carried on in the leading western metal-mining districts, the exact location to be announced in April of each year. The expenses for the trip are estimated at \$225. A deposit of \$50 must be made before starting on the trip to cover board and lodging and necessary side trips. Any balance will be returned at the close of the work in the field.

All notes, data, and sketches, necessary for a complete report on the field work, must be fully and neatly recorded in notebooks. These notebooks will be collected at the close of the trip and returned to the student at the reopening of field work at the school. In judging the character of the student's field work equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below the standard that should be demanded of candidates for senior work. During the months of June, July, and August, the student is urged to spend at least six weeks in actual underground mining work in the West for which he may receive wages. The department will render all possible assistance in locating students in districts of their choice.

Field work will reopen at the School of Mines, Tuesday, September 20, 1921. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in Mining and Metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned: Metallurgy, September 20 to 27, inclusive; Mining and Mine Plant, September 28 to October 11, inclusive. On October 11 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 11. These reports shall become the property of the school.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reason, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

DÉPARTMENT OF MINING ENGINEERING MINE-SURVEYING

The work in surveying is given in the sophomore year and is designed primarily for mining engineers. The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning with the first Monday in May, the class devotes seven weeks to field work at some convenient point on the Mesabi, Cuyuna, or Vermilion Range. The exact location will be announced in March of each year. The expenses for this trip are estimated at \$150.

The students will be divided into squads of two to four. Each student will be required to complete satisfactorily a practical course in plane and underground surveying including exercises in chaining and taping; adjustment and use of surveying instruments; solar and stellar observations; laying out railroad tangents and curves; making earthwork estimates; and other problems. In addition each squad will be required to make a yardage estimate of the stripping of an open-pit mine; to transfer a meridian, from the surface, underground and make a complete survey of an underground mine.

The data obtained will be used in the course in mine-mapping during the winter quarter of the junior year.

A full equipment of surveying instruments of the latest and best types is furnished each squad for this work.

Courses Leading to the Degree of Engineer of Mines "(in Geology)

JUNIOR YEAR

First Quarter

Geology 61f or 65f, Blowpipe Analysis or Crystallography, 6, Geol. 25s Geology 73f, Economic, 3, Geol. 2s, 105f Geology 131f, Advanced Petrology, 6, Geol. 2s, 106w Geology 151f, Advanced General, 3, Geol. 73f German 4f or 7f, or French I or 21, or Spanish I or 65, 5 or 3 Mining 2f, Exploration, 5, Min. Is Mining 6f, First Aid, I week Electives, 3

Second Quarter

Geology 124w, Struct. and Metamorphic, 3, Geol. 73f, 105f

Geology 132w, Advanced Petrology, 6, Geol. 2s, 106w

Geology 144w, Geologic Maps, 6, Geol. 73f

Geology 152w, Advanced General, 3, Geol. 73f

German 5w or 25w, or French 2w or 22w, or Spanish 2w or 66w, 5 or 3

Mining 3w, Tunneling, 5, Min. 2f

Mining Engineering 5w, Mine-Mapping, 6, Min. Eng. 4s

Third Quarter

Geology 125s, Struct. and Metamorphic, 6, Geol. 73f, 105f

Geology 133s, Advanced Petrology, 6, Geol. 2s, 106w

Geology 145s, Geologic Maps, 12, Geol. 73f

Geology 153s, Advanced General, 3, Geol. 73f

Mining 4s, Mining Methods, 5, Min. 3w

Geology 150s, Field Work in Geology beginning about May 1, six weeks, Geol. 125s

Geologic Field Work beginning about June 15 with geological surveys or private companies

SENIOR YEAR

First Quarter

Geology 91f, Paleontology, 3, Geol. 2s Geology 111f, Ore Deposits, 3, Geol. 73f, 106w Metallurgy, 12f, Ore-Dressing, 3, Phys. 5s, Geol. 25s Mining 52f, Mining Methods, 5, Min. 4s Mining 51f, Mine Rescue, 1 week Thesis, 8 Electives, 6

Second Quarter

Geology 92w, Paleontology, 3, Geol. 2s Geology 112w, Petroleum, 3, Geol. 111f Geology 137w, Testing Economic Materials, 5, Geol. 73f Geology 140w, Applied Petrography, 5, Geol. 111f, 13s Geology 166w, Mineralography, 6, Geol. 111f Metallurgy 13w, Ore-Dressing, 3, Met. 12f Mining 53w, Mine Management, 5, Min. 52f Thesis, 3

Third Quarter

Geology 93s, Paleontology, 3, Geol. 2s Geology 113s, Problems in Ore Deposits, 4, Geol. 112w

16

Geology 141s, Applied Petrography, 5, Geol. 111f, 13s Geology 167s, Mineralography, 6, Geol. 111f Metallurgy 17s, Ore-Dressing Lab., 6, Met. 13w Thesis, 10

FIELD WORK IN GEOLOGY

At the end of the sophomore year mining students are required to devote about three weeks to geologic mapping. This course usually comes after a seven weeks' course in surveying and the fields chosen are the Vermilion and Mesabi iron ranges of Minnesota. This work is intended to train the students in the interpretation of field relations and the preparation of geologic maps and cross-sections.

The second field course in geology is required only of those students who are candidates for the Engineer of Mines (in Geology) degree. The course begins early in May and is completed in June. The course requires altogether about six weeks' work, and the field chosen is the Black Hills region of South Dakota or some other western region. The student is trained in the interpretation of field data; in detailed mapping, underground and on the surface; in the preparation of geologic cross-sections through mines; and he may gather material which will serve as a basis for future study in advanced courses the following year. The work conforms to the standards of official surveys as nearly as practicable. At the close of the field season the students are expected to obtain positions with mining companies either as miners or as engineers, or if openings are available, they may enter geological surveys for the season's work.

Field work in geology for students having taken either of the above trips will reopen at the School of Mines, Tuesday, September 20, 1921. The final reports covering the field work must be prepared at the School of Mines under the direct supervision of the Department of Geology. These reports are to be turned in to the department on September 27.

Courses Leading to the Degree of Metallurgical Engineer

JUNIOR YEAR

First Quarter

Geology 73f, Economic, 3, Geol. 2s, 105f

Mechanics 9f, Mechanics, 5, Math. 8s

Mechanics 12f, Mine Plant, 6, Math. 8s

Metallurgy 12f, Ore-Dressing, 3, Phys. 43s, Geole 25s

Metallurgy 14f, Ore-Dressing Lab., 4, Phys. 43s, Geol. 25s

Metallurgy 105f, Base Metals, 4, Met. 3f

Metallurgy 153f, Metallography, 7, Chem. 28w, Phys. 43s

Mining 6f, First Aid, I week

Second Quarter

Mechanics 10w, Mechanics of Materials, 5, Mech. 9f Mechanics 15w, Metallurgical Plant, 3, Mech. 12f Metallurgy 13w, Ore-Dressing, 3, Met. 12f, 14f

Metallurgy 15w, Ore-Dressing Lab., 4, Met. 12f, 14f

Metallurgy 106w, Base Metals, 4, Met. 105f

Metallurgy 154w, Metallography, 7, Met. 153f

Mining Engineering, 5w, Mine-Mapping, 6, Min. Eng. 4s

Third Quarter

Mechanics 11s, Mechanics of Materials, 5, Mech. 10w

Mechanics 16s, Metallurgical Plant, 3, Mech. 15w

Metallurgy 16s, Ore-Dressing Lab., 6, Met. 13w, 15w

Metallurgy 107s, Precious Metals, 4, Met. 106w

Metallurgy 155s, Metallography, 7, Met. 154w

Mining Engineering 6s, Mine-Mapping, 6, Min. Eng. 5w

Metallurgy 21s, Field Work in Metallurgy beginning about May 1, 10 days, satisfactory completion of junior year

Mining 5s, Field Work in Mine Plant and Mining beginning about May 1, 2 weeks, satisfactory completion of junior year

SENIOR YEAR

First Quarter

Electrical Engineering 41f, Electric Power, 5, Phys. 43s Geology 111f, Ore Deposits, 3, Geol. 73f, 106w, or

Mechanics 18f, Engineering Construction, 8, Mech. 11s

Mechanics 17f, Water Power, 7, Mech. 11f

Metallurgy 6f, Ore-Testing, 2, Met. 107s

Metallurgy 7f, Ore-Testing Lab., 8, Met. 107s

Metallurgy 108f, Electrometallurgy, 3, Met. 107s

Metallurgy 18f, Thesis, 8

Mining 51f, Mine Rescue, 1 week

Second Quarter

Geology 112w, Petroleum, 3, Geol. 111f, or

Mechanics 19w, Mine-Plant Design, 9, Mech. 18f

Metallurgy, 8w, Special Problems in Ore-Testing, 4, Met. 107s

Metallurgy 10w, Advanced Metallurgy, 10, Met. 107s

Metallurgy 19w, Thesis, 18, Met. 18f

Metallurgy 164w, Advanced Metallography, 3, Met. 155s, or

· Geology 80w, Advanced Historical, 3, Geol. 73f, or

Mining 53w, Mine Management, 5, Mining 52f

Third Quarter

Metallurgy 9s, Special Problems in Ore-Testing, 4, Met. 107s Metallurgy, 11s, Advanced Metallurgy, 10, Met. 107s Metallurgy 20s, Thesis, 18, Met. 19w Metallurgy 165s, Advanced Metallography, 3, Met. 155s, or

Geology 113s, Problems in Ore Deposits, 4, Geol. 112w, or Mining 54s, Mine Administration, 5, Mining 53w

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use. The practical work consists in visits to smelting and refining works which are accessible. The work in metallurgy extends through three years.

ASSAYING

The lectures treat of and describe apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags is shown, and instruction is given as to nature and quantity of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace-room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their report in detail. This work is offered to students completing the necessary courses in mineralogy and chemistry.

ORE-DRESSING

The lectures and recitations in ore-dressing extend through the junior year, and comprise a detail study of ore-dressing and concentrating machinery, together with a study of typical combinations of dressing machines as found in the various mining districts of the United States. In connection with the theoretical work, the ore-dressing laboratory and testing plant of the school are utilized for illustration, and practical use of ore-dressing machinery.

ORE-TESTING

The lectures treat of the problems in ore-testing such as extraction and losses in roasting, concentration, and other milling operations. Both the ore-dressing laboratory and the Mines Experiment Station laboratory are available for working out practical problems. The Mines Experiment Station laboratory is the old Ore-Testing Works modified to aid the mining interests of the state of Minnesota in solving problems connected with concentration and conservation of the iron and manganiferous ores of the state.

The School of Mines laboratories therefore serve both educational and commercial needs.

Educational.—The student becomes familiar with the use of the various types of machines such as crushers, rolls, classifiers, concentration and flotation machinery.

Commercial.—The laboratories are used by the Mines Experiment Station to determine the best methods of treatment to produce a commercial product at the lowest cost. Recently additional commercial machinery has been obtained and new appliances are constantly being developed. Commercial samples varying from 500 pounds to car-load lots can be treated by various methods.

FIELD WORK IN METALLURGY

At the end of the junior year students are required to study practical operations at one or more smelters and mills. This begins about May 1. The expenses for this trip are estimated at \$225. A deposit of \$50 must be made before starting on the trip to cover board and lodging and necessary side trips. Any balance will be returned at the close of the work in the field.

All notes, data, and sketches, necessary for a complete report on the field work, must be fully and neatly recorded in notebooks. These notebooks will be collected at the close of the trip and returned to the student at the reopening of field work at the school. In judging the character of the student's field work equal importance will be given to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below standard.

Upon termination of the junior field work in metallurgy and two weeks in mining and mine plant (not later than June 1), the members of the junior class who are candidates for the degree of Metallurgical Engineer are urged to spend at least six weeks in practical work in one or more of the smelters or mills, for which they may receive wages. The department will render all possible assistance in locating students in districts of their choice.

Field work will reopen at the School of Mines, Tuesday, September 20, 1921. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in metallurgy and mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: metallurgy, September 20 to 27, inclusive; mining and mine plant, September 28 to October 11, inclusive.

On October 11, all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 11. These reports shall become the property of the school.

METALLOGRAPHY

Courses in metallography are offered to candidates for the degree of Metallurgical Engineer in the School of Mines, to students in the Colleges of Dentistry, Engineering and Architecture, Science, Literature, and the Arts, in the School of Chemistry, and in the Graduate School.

These courses deal with the study of metals and alloys. The lectures treat of and describe the apparatus used in connection with this subject, the method of preparing specimens, physical and metallographic principles involved, and the interpretation of the results of microscopic examination and thermal analysis. There is an elaborate file of references and abstracts relating to the whole field of metallography, furnishing up-to-date information on the various phases of the work. A collection of specimens, photomicrographs, and lantern slides covering wrought iron, low-carbon structural, rail, and tool steels, brasses, bronzes, and other industrial alloys is available for study and comparison. The laboratory course includes the microscopic and pyrometric study of metals and alloys. The laboratories are equipped with grinding and polishing apparatus, microscopes, photomicrographic apparatus, vacuum electric furnace, carbon resistance furnaces, nichrome and platinum resistance furnaces of various designs, gas furnaces, heat-treating furnace, and pyrometers of the latest and improved types. There is a special darkroom for the preparation of photomicrographs.

DEPARTMENTAL STATEMENTS EXPLANATION OF COURSE NUMBERS

The suffixes f, w, or s, indicate the quarter in which a course is offered, e.g., fall, winter, or spring quarters respectively. More than one suffix indicates that a course is offered in each of the corresponding quarters. No suffix indicates that the time of taking a course is to be arranged with the departments concerned.

All undergraduate courses are numbered from I to 100. All courses open to undergraduates and graduates are numbered from 101 to 200. Strictly graduate courses are numbered from 201 up.

CHEMISTRY

Professor Charles F. Sidener; Associate Professor M. Cannon Sneed; Assistant Professors Isaac W. Geiger, Raymond E. Kirk; Instructors Norville C. Pervier, Landon A. Sarver.

No.	Title		Lab. hrs.	Required of	Prereq. courses
4f	General Inorganic Chemistry	. 3	3	All fr.	4f
5 W	General Inorganic Chemistry	. 3	3	All fr.	h.s. chem.
14f	General Inorganic Chemistry	. 3	6	All fr.	
15W	General Inorganic Chemistry	. 3	б	All fr.	14f
16s	Qualitative Chemical Analysis	. 3	6	All fr.	5w or 15w
28w	Quantitative Chemical Analysis .	. г	7	All soph.	16s
123f	Iron and Steel Analysis	. I	6	Élective	28w
I24W	Mineral and Ore Analysis	. і	6	Elective	28w

- 4f. GENERAL INORGANIC CHEMISTRY. Designed for those who have had one year of high-school chemistry. Includes a study of the general laws of chemistry and of the non-metals, the metals and their compounds. Mr. KIRK.
- 5W. GENERAL INORGANIC CHEMISTRY. A continuation of Course 4f. Mr. Kirk.
- 14f. GENERAL INORGANIC CHEMISTRY. For those who have had no highschool chemistry. Includes a study of the general laws of chemistry and of the non-metals, the metals, and their compounds. MR. PERVIER.
- 15W. GENERAL INORGANIC CHEMISTRY. A continuation of Course 6f. Mr. Pervier.
- 16s. QUALITATIVE ANALYSIS. Laboratory work in systematic qualitative analysis with lectures on solutions, ionization, chemical and physical equilibrium, oxidation and reduction, and other subjects pertinent to qualitative analysis. Mr. KIRK, MR. PERVIER.

- 28w. QUANTITATIVE ANALYSIS. A short introductory course covering the general principles and methods of quantitative analysis, both gravimetric and volumetric. Typical problems are assigned and attention given to proper laboratory practice. Mr. SIDENER, MR. GEIGER, MR. SARVER.
- 123f. IRON AND STEEL ANALYSIS. The rapid technical methods for the determination of the common constituents of iron ore. Iron and steel will be discussed and compared, and typical problems assigned for laboratory practice. MR. SIDENER, MR. GEIGER, and Assistants.
- 124W. MINERAL AND ORE ANALYSIS. A course in the rapid technical methods for the determination of important constituents in minerals, ores, and slags. MR. SIDENER, MR. GEIGER, and Assistants.

DRAWING AND DESCRIPTIVE GEOMETRY

Professor William H. Kirchner; Assistant Professor Robert W. French; Instructors Leon Archibald, Orrin W. Potter.

		Lec. or	Lab.			
No.	Title	rec. hrs.	hrs.	Required of		Prereq. courses
rif	Engineering Drawing		IO	All fr.		
I2W	Engineering Drawing		8	All fr.		III
138	Engineering Drawing		8	All fr.	• '	I2W
14f	Descriptive Geometry	• 3		All soph.		13s, Math. 5s
15W	Drafting		4	All soph.		14f

- 11f. ENGINEERING DRAWING. Sketching, lettering, representation, elements of drafting, details of machines and structures, interpretation of working drawings. Mr. KIRCHNER, Mr. ARCHIBALD.
- 12w. ENGINEERING DRAWING. Continuation of Course 11f. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. MR. KIRCHNER, MR. ARCHIBALD, MR. POTTER.
- 13s. ENCINEERING DRAWING. Continuation of Course 12w. The elements of general drafting. Maps and sketches. Brush and pen conventions. MR. KIRCHNER, MR. ARCHIBALD, MR. POTTER.
- 14f. DESCRIPTIVE GEOMETRY. Projection; central and special cases, principles and application, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems. MR. KIRCHNER.
- 15w. DRAFTING. Graphics, machine drafting, and structural drafting. Instruction in drafting-room methods. MR. ARCHIBALD, MR. POTTER.

ELECTRICAL ENGINEERING

Professor George D. Shepardson; Associate Professor William T. Ryan; Instructor George W. Swenson.

COURSES

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
41f	Electric Power	. 2	3	Sr.E.M.	Physics 43s

41 f. ELECTRIC POWER. Elementary principles of continuous currents. Continuous current generators and motors. Elementary principles of alternating currents. Alternating current generators, transformers, and motors. Measurement of power. Elementary principles of transmission and distribution. Lectures, recitation, laboratory work. MR. RYAN.

EXPERIMENTAL ENGINEERING

Professor FRANK B. ROWLEY, Director of Laboratory; Instructor BURTON J. ROBERTSON, Assistant Director.

COURSES

No.	Title	Lec. or		Required of	Prereq. courses
M.E. 84f	Elementary Laborator		111.3.	Required of	reieq. courses
	(General)		4	Jr. E.M.	With Mech. 12f
M.&M. 144w	Materials-Testing Laboratory		4	Jr. E.M.	With Mech. 10w
M.E. 181w	Advanced Laboratory (Gen		4	J	ff the filecout roll
•	eral)		4	Sr. E.M.	M.E. 84f

- M.E. 84f. ELEMENTARY GENERAL LABORATORY. Calibration of thermometers, gages, weirs, nozzle orifices, and meters. Efficiency of machines, friction of belting, friction tests; burning point, chill point, viscosity and specific gravity of oils. Tests of water motor, rams, and pulsometers. Mr. Shoop.
- M.&M. 144w. MATERIALS-TESTING LABORATORY. Investigation of physical properties of metals and engineering materials: wood, cement, ropes, etc., supplemented by lectures and materials of construction and methods of testing. Mining and metallurgical engineers. MR. WILCOX.
- M.E. 181W. ADVANCED GENERAL LABORATORY. Indicator practice, valvesetting, separating and throttling calorimeters, tests of steam engines, gas engines, pumps, air compressors, blowers, turbines, boilers, and power plant. Mr. ROWLEY, MR. SHOOP.

GEOLOGY AND MINERALOGY

Professors William H. Emmons, Frank F. Grout, Clinton R. Stauffer; Assistant Professor Thomas M. Broderick; Instructors Ira S. Allison, John W. Gruner, George M. Schwartz, George A. Thiel, W. Courtney Werner.

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
IW	General Geology	. 3		All soph.	105f
25	General Geology	. 3	4	All soph.	105f
19S	Elem. of Paleontology	. 3		Elective	
23f	Elem. of Mineralogy	. 4	4	All fr.	
24W	Elem. of Mineralogy	. 2	2	All fr.	23f
258	Elem. of Mineralogy	. 4	4	All fr.	24W
Sif	Blowpipe Analysis	. 2	4	Elective	25S
65f	Crystallography	. 2	4	Elective	258
73f	Econ. Geology	. 3		All jr.	28, 105f
86w	Advanced Hist. Geology	. 3		Sr.E.M.&Met.E	73f
85s	Summer Field Work	:	2 wks.	All soph.	25
91f	Paleontology	• 3		Sr.E.M.(Geol.)	25
92W	Paleontology	• 3	~.	Sr.E.M.(Geol.)	28
93s	Paleontology	. 3		Sr.E.M.(Geol.)	25
IOIT	Principles of Stratigraphy	• 3		Elective	25S
105f	Rock Study		4	All-soph.	25S
roew	Petrography		4	All soph.	105f
IIIf	Ore Deposits	. 3	• •	All sr.	73f, 106w
112W	Geology of Petroleum	• 3		All sr.	IIIf
1135	Problems in Ore Deposits		4	All sr.	II2W
I24W	Struct. & Metamorph. Geol	• 3		Jr.E.M.(Geol.)	73f, 105f
1258	Struct. & Metamorph. Geol	. 6	• • •	Jr.E.M.(Geol.)	73f, 105f
131f	Advanced Petrology	• 3	3	Jr.E.M.(Geol.)	28, 106W
132W	Advanced Petrology	• 3	3	Jr.E.M.(Geol.)	28, 106w
1338	Advanced Petrology	• 3	3	Jr.E.M.(Geol.)	28, 106w
137W	Testing Econ. Minerals		4	Sr.E.M.(Geol.)	73f
140W	Applied Petrography		4	Sr.E.M.(Geol.)	111f, 1138
1415	Applied Petrography	. I	4	Sr.E.M.(Geol.)	111f, 1138
144W	Construction and Interpretatio	n			
	of Geologic Maps	• ••	6	Jr.E.M.(Geol.)	73f
145S	Construction and Interpretatio	n			
	of Geologic Maps		12	Jr.E.M.(Geol.)	73f
1505	Field Geology		6 wks.	Jr.E.M.(Geol.)	1255
1 51f	Advanced General Geology		• •	Jr.E.M.(Geol.)	73f
152W	Advanced General Geology		• •	Jr.E.M.(Geol.)	73f
I53S	Advanced General Geology			Jr.E.M.(Geol.)	73f
166w	Mineralography		6	Sr.E.M.(Geol.)	IIIf
167s	Mineralography		6	Sr.E.M.(Geol.)	ıııf
246	Pre-Cambrian Geology		3	Elective	[™] 1258
247	Geol. and Exploration of Lal				
	Superior Region	- 3	• •	Elective	1255

- IW,25. GENERAL GEOLOGY. A synoptical treatment of materials of the earth, and of geologic processes. Physiographic, dynamic, structural, and historical geology. MR. THIEL.
- 195. ELEMENTS OF PALEONTOLOGY. An introduction to the study of fossil organisms. Lectures supplemented by field excursions. Mr. STAUFFER.
- 23f,24w,25s. ELEMENTS OF MINERALOGY. The crystal systems; morphological, physical, chemical characters of minerals; occurrence, genesis, and uses of minerals; classifications and description of common minerals; rock minerals, and common rocks. Determinative work in the laboratory, blowpipe analysis, sight identification. Mr. BRODERICK, MR. GRUNER, MR. WERNER.

- 61f. BLOWPIPE ANALYSIS. The determination of minerals by systematic blowpipe analysis. Mr. BRODERICK, MR. GRUNER.
- 65f. CRYSTALLOGRAPHY. Projection and geometric relations of crystal planes; crystal nomenclature; the relation of special properties to morphology. A study of crystal models, crystal-drawing, identification of minerals from crystal measurements, and mathematical calculation. MR. BRODERICK, MR. GRUNER.
- 73f. ECONOMIC GEOLOGY. Study of non-metallic minerals of economic value, and discussions of geologic guides to prospecting for these deposits. MR. SCHWARTZ.
- 80w. ADVANCED HISTORICAL GEOLOGY. The sequence of events in geologic history, of interest to the advanced student in mining. Mr. STAUFFER, MR. THIEL.
- 85s. FIELD WORK. About two weeks in June are spent in geologic mapping of selected areas in the iron district of Minnesota. Involves preparation of geologic maps and written reports. MR. GRUNER, MR. SCHWARTZ.
- 91f-92w-93s. PALEONTOLOGY. Index fossils of North America. A study of fossil forms with special reference to those of geologic importance; faunas and their correlation. Mr. STAUFFER.
- IOIf. PRINCIPLES OF STRATIGRAPHY. Origin and structure of sedimentary deposits; the interpretation of these in relation to paleography; field work in connection with Cambrian and Ordovician problems. (Not offered in 1921-22.)
- 105f. ROCK STUDY. The occurrence and genesis of igneous, sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and alteration. The classification and methods of identification and description of rocks. MR. GROUT, MR. BRODERICK. MR. THIEL.
- 106w. PETROGRAPHY. The identification and study of minerals and rocks by optical methods; the study of igneous rocks, crystalline schists, and metamorphic rocks. The origin and classification of rocks. MR. GROUT, MR. BRODERICK, MR. GRUNER, MR. THIEL.
- IIIf. ORE DEPOSITS. The nature, distribution, and genesis of ore deposits of the United States; relations of ore deposits to geologic structure; the deformation and superficial alteration of ore deposits. MR. EMMONS.
- II2W. GEOLOGY OF PETROLEUM. The nature, origin, and accumulation of petroleum; discussion of the various oil fields of the world. MR. EMMONS.
- 1135. PROBLEMS IN ORE DEPOSITS. Field excursions, map work, lectures on field and laboratory methods. MR. EMMONS.

- 124w,125s. STRUCTURAL AND METAMORPHIC GEOLOGY. The conditions, processes, and results of metamorphism; structural features resulting from deformation under varying conditions of load. Mr. SCHWARTZ.
- 131f,132w,133s. ADVANCED PETROLOGY. Advanced optical methods. Criteria for rapid identification of minerals and rocks. The uses of schedules and tables. Standard rock types. Regional and genetic studies. Petrographic reports. MR. GROUT.
- 137W. TESTING ECONOMIC MINERALS. Methods of determining quality of mineral deposits, described and illustrated by laboratory tests of coal, clay, oil, building stone, and metallic ores. MR. GROUT.
- 140w,141s. APPLIED PETROGRAPHY. Determination of ores and gangue minerals. Microscopic studies of paragenesis of ores and other mineral associations. Practical problems in mining and geology settled by microscopic and optical examinations. Mr. GROUT.
- 144w,145s. CONSTRUCTION AND INTERPRETATION OF GEOLOGIC MAPS. Methods of geologic examination; problems in construction and interpretation of geologic maps and sections. MR. ALLISON.
- 1508. FIELD GEOLOGY. Detailed, systematic work conforming with standards of official surveys. Preparation of geological maps; structure sections, reports; paragenesis of ores and their relations to geologic structures. Field for 1921, Black Hills, South Dakota. Reports to be written week before college opens in fall. MR. EMMONS, MR. SCHWARTZ.
- 151f,152w,153s. Advanced General Geology. Geologic processes and their results; development of the North American continent. Mr. Stauffer.
- 166w,167s. MINERALOGRAPHY. Methods of studying opaque minerals and the application of the methods to problems in ore genesis and history MR. BRODERICK, MR. SCHWARTZ.
- 246. PRE-CAMBRIAN GEOLOGY. The problems of pre-Cambrian correlation and structure; the pre-Cambrian stratigraphy of North America. (Given in alternate years.)
- 247. GEOLOGY AND EXPLORATION OF LAKE SUPERIOR REGION. The geology of the Lake Superior iron districts. Methods used in the exploration of iron ore; interpretation of drill cores; cartographic expressions of drill data; models of drilled areas. Principles of magnetic surveying.

GERMAN

Professor CARL SCHLENKER; Assistant Professor JAMES DAVIES; Instructor Cowden LAUGHLIN.

COURSES								
No.	Title	Rec. hrs.	Required of	Prereq. courses				
*4f, 5w, 6s	Beginning	• 3	Jr.E.M.(Geol.)					
7f	Intermediate	• 3	Jr.E.M.(Geol.)	4-5-6 or equiv.				
27f	Narrative Prose	• 4	Elective	2 yrs. prep.				
*25w, 26s	Elementary Scientific	• 3	Elective	7				
*28w, 29s	Advanced Chemical	• 3	Elective	27				

* All quarters must be completed before credit is given in any one quarter.

- 4f-5w-6s. BEGINNING FOR MINERS. Pronunciation, grammar, conversation; selected readings in easy prose. Mr. SCHLENKER, Mr. DAVIES.
- 7f. INTERMEDIATE FOR MINERS. Continuation of Course 4-5-6. MR. DAVIES.
- 27f. NARRATIVE PROSE. Reading, grammar review. Mr. LAUGHLIN.
- 25w,26s. ELEMENTARY SCIENTIFIC. Readings from simple expository German. Selections from works on chemistry. Mr. DAVIES.
- 28w,29s. Advanced Chemical German. Selections from more difficult works on chemistry. Mr. LAUGHLIN.

METALLURGY

Professors William R. Appleby, Peter Christianson, Levi B. Pease; Associate Professor Oscar E. Harder; Instructors Ralph L. Dowdell, Erwin H. Kersten, Elwyn L. Smith.

COURSES

		Lec.	Lab.		
No.	Title	hrs.	hrs.	Required of	Prerequisite courses
IW	Assaying	4		All fr.	Chem. 14f, Geol. 23f
2W	Assaying Lab		8	All fr.	Chem. 14f, Geol. 23f
3f	General Metallurgy	3		All soph.	1w, 2w, Chem. 16s
4W	Metallurgy of Pig Iron	3		All soph.	3f '
55	Met. Wrought Iron and				
	Steel	3		All soph.	4W
6f	Ore-Testing	2		Sr.E.M.&Met.E.	1075
7f	Ore-Testing Lab		8	Sr.E.M.&Met.E.	. 1075
8w.,	Spec. Prob. in Ore-Test.		4	Sr.E.M.&Met.E.	1075
9s	Spec. Prob. in Ore-Test.		8	Sr.E.M.&Met.E.	1075
IQW	Advanced Metallurgy	4	6	Sr.Met.E.	1075
IIS	Advanced Metallurgy	4	6	Sr.Met.E.	1078
12f	Ore-Dressing	3		All jr.	Phys. 43s, Geol. 25s
13W	Ore-Dressing	3	• •	All jr.	Met. 12f
14f	Ore-Dressing Lab	• •	4	Jr.Met.E.	Phys. 43s, Geol. 25s
15W	Ore-Dressing Lab		4	Jr.Met.E.	Met. 12f, 14f
ı6s	Ore-Dressing Lab		6	Jr.Met.E.	Met. 13w, 15w
I7S	Ore-Dressing Lab		6	Jr.E.M.&E.M.(Geol.)	Met. 13w
18f	Thesis in Metallurgy		8	Sr.Met.E.	Satisfactory comple-
					tion of jr. year
19W	Thesis in Metallurgy		18	Sr.Met.E.	18f
20S	Thesis and Specifications		18	Sr.Met.E.	19W
215	Field Work in Met		**	Jr.Met.E.	Same as 18f
22f	Metallurgy	3		M.E.&Chem.Elective	Chem. 8s or equiv.
23W	Metallurgy	3		E.E.&Chem.Elective	Chem. 8s or equiv.
105f	Met. of Base Metals	4		Jr.E.M.&Met.E.	3f
тобм	Met. of Base Metals	4		Jr.E.M.&Met.E.	105f
1078	Met. of Precious Metals.	4		Jr.E.M.&Met.E.	тобw
108f	Electrometallurgy	3		Sr.Met.E.	1075
150W	Mphy. for Elec. Eng	2	3	Elective	
1515	Adv. Mphy. for Elec.				
	Eng	2	3	Elective	1 50W
153f	Mphy., Long Course	3	4	Jr.Met.E.	Chem.28w, Phys.43s

** Ten days.

DEPARTMENTAL STATEMENTS

		Lec. or	Lab.			
No.	Title	rec. hrs.	hrs.	Required of	Pi	rerequisite courses
154W	Mphy., Long Course	. 3	4	Jr.Met.E.	15	3f
1555	Mphy., Long Course	. 3	4	Jr.Met, E.	1.5	4 W
156w	Mphy. for Mech. Eng	. 2	3	Elective		
1578	Adv. Mphy. for Mech	I.				
	Eng	. 2	3	Elective	15	6 w
159S	Dental Metallography	. 2		Elective	Cł	nem. 21-22
160f	Mphy. for Chemists	, 2	2	Elective	Cł	nem. 20
161 W	Adv. Mphy. for Chemist	s 2	2	Elective	16	of
162S	Adv. Mphy. for Chemist	s 2	2	Elective	16	of
163f	Adv. Metallography	. To be	ar.	Elective	15	1 155, 157 or
						equiv.
164w	Adv. Metallography .			To be ar.	Elective	
165s	Adv. Metallography .			To be ar.	Elective	
201f	Adv. Mphy. for Gr. S	Students		To be ar.	Elective	
2 02 W	Adv. Mphy. for Gr. S	Students		To be ar.	Elective	
2038	Adv. Mphy. for Gr. S	Students		To be ar.	Elective	

- IW. ASSAYING. The determination of values of ores, metallurgical products by the fire method. Lectures and recitations. Mr. APPLEBY, Mr. CHRISTIANSON.
- 2W. ASSAY LABORATORY. Practical determination of gold, silver, lead, and tin by the fire method. Mr. Christianson, Mr. Pease, Mr. Kersten, Mr. Smith.
- 3f. GENERAL METALLURGY. Combustion, fuels, refractory materials, furnaces and fluxes. Lectures and recitations. Mr. CHRISTIANSON.
- 4w. METALLURGY OF PIG IRON. General principles of iron blast-furnace practice. Construction of furnace, handling of stock, and products, principles of regulation. Lectures and recitations. Mr. CHRISTIANSON.
- 55. METALLURGY OF WROUGHT IRON AND STEEL. General principles involved in the production of wrought iron and steel. Lectures and recitations. MR. CHRISTIANSON.
- 6f. ORE-TESTING. General principles involved in determining the best method of extraction, including amalgamation, concentration, cyanidation, roasting, etc. Lectures and recitations. MR. CHRISTIANSON.
- 7f. ORE-TESTING LABORATORY. Practical determination of extraction and distribution of values in mill and metallurgical products. Methods of calculation. Mr. CHRISTIANSON and Assistants.
- 8w. SPECIAL PROBLEMS IN ORE-TESTING. Continuation of Course 7f. Practical determinations for regulating metallurgical operations. MR. PEASE.
- 95. SPECIAL PROBLEMS IN ORE-TESTING. Continuation of Course 8w. MR. PEASE.

- IOW. ADVANCED METALLURGY. Pyrometry, calorimetry, and metallurgical calculations to determine heat balance and heat distribution. Lectures and laboratory work. MR. CHRISTIANSON.
- IIS. ADVANCED METALLURGY. Design of furnaces, conferences and laboratory work. Mr. Christianson.
- 12f. ORE-DRESSING. Crushing, sizing, classification, and concentration of ores. Lectures and recitations. MR. SMITH.
- 13w. ORE-DRESSING. Continuation of Course 12f. MR. SMITH.
- 14f. ORE-DRESSING LABORATORY. Practical examination of ores and the use of ore-dressing machinery. MR. SMITH.
- 15w. Ore-Dressing Laboratory. Practical problems in ore-dressing. Mr. Smith.
- 16s. ORE-DRESSING LABORATORY. Continuation of Course 15w. MR. SMITH.
- 17s. ORE-DRESSING LABORATORY. Short course in the laboratory use of ore-dressing machinery. MR. SMITH.
- 18f. THESIS IN METALLURGY. Conferences to select suitable problem together with preliminary laboratory work on problem selected. Mr. CHRISTIANSON, Mr. PEASE.
- 19W. THESIS IN METALLURGY. Continuation of Course 18f. Mr. CHRIS-TIANSON, MR. PEASE.
- 205. THESIS AND SPECIFICATIONS. Completion of thesis including specifications covering installation of a plant. MR. CHRISTIANSON, MR. PEASE.
- 215. FIELD WORK IN METALLURGY. Study of metallurgical operations at smelters and mills. Detail reports are required covering plants visited. MR. CHRISTIANSON, MR. PEASE.
- 22f. METALLURGY OF BASE METALS. Short course for mechanical engineers. Special consideration is given to the mechanical appliances. Lectures and recitations. Mr. CHRISTIANSON, Mr. PEASE.
- 23W. METALLURGY OF BASE METALS. Short course for electrical engineers. Special consideration is given to electrical appliances. Lectures and recitations. Mr. CHRISTIANSON, Mr. PEASE.
- 105f. METALLURGY OF BASE METALS. Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining. Lectures and recitations. Mr. PEASE.
- 106w. METALLURGY OF BASE METALS. Continuation of Course 105f. MR. PEASE.
- 1075. METALLURGY OF THE PRECIOUS METALS. Principles involved and methods used in the extraction of gold, silver, and other precious metals. Lectures and recitations. Mr. PEASE.

- **IO86.** ELECTROMETALLURGY. Application of electricity to production of heat for smelting ores and refining metals. Costs of fuel and electricity for heating, relative efficiencies of electric and fuel furnaces. Construction of high-temperature furnaces and commercial plants MR. CHRISTIANSON.
- 150w. METALLOGRAPHY FOR ELECTRICAL ENGINEERS. Principles of metallography, including pyrometry, thermal analysis, constitution diagrams, microscopic and photomicrographic technic; study of typical alloys with special reference to electrical resistance, conductivity, magnets, etc. Laboratory work and demonstrations. Mr. HARDER, MR. DOWDELL.
- 1518. ADVANCED METALLOGRAPHY FOR ELECTRICAL ENGINEERS. Continuation of 150w. Study of iron and steel, alloy steels, metals and alloys used in electrical engineering practice. Special problems for outside reading and for research. Laboratory work. MR. HARDER, MR. DOWDELL.
- 153f,154w,155s. METALLOGRAPHY. (Long course for metallurgical engineers.) Theory of metallic alloys. Metallographic technic. Properties of metals and alloys. Metallography of iron and steel and commercial alloys. Technical metallography. Laboratory work. Mr. HARDER, MR. DOWDELL.
- 156w. METALLOGRAPHY FOR MECHANICAL ENGINEERS. Principles of metallography, including pyrometry, thermal analysis, constitution diagrams, microscopic and photomicrographic technic; metallography and heat treatment of iron and steel. Laboratory work. Mr. HARDER, Mr. Dowdell.
- 157s. Advanced Metallography for Mechanical Engineers. Continuation of 156w. Metallography of alloy steels, tool steels, high-speed tool steels, and important non-ferrous alloys; metallography applied to engineering practice and specifications. Outside reading and special reports. Laboratory work. MR. HARDER, MR. DOWDELL.
- 1598. DENTAL METALLOGRAPHY. Study of the dental alloys from the standpoint of metallography. Lectures, recitations, and demonstrations, taking up the most important metals and alloys, with special reference to those used in dentistry. MR. HARDER, MR. DOWDELL.
- 160f. METALLOGRAPHY FOR CHEMICAL STUDENTS. Metallography, including constitution diagrams, preparation and standardization of thermocouples, preparation and thermal analysis of alloys, their microscopic examination and making photomicrographs; typical alloy systems such as ironcarbon (steel and cast iron); some non-ferrous alloys. Laboratory work. Mr. HARDER, Mr. DOWDELL.
- 161w. Advanced Metallography for Chemical Students. Metallography and heat treatment of iron and steel, including alloy steels, commercial uses of various steels, and engineering specifications. Laboratory work. Mr. Harder, Mr. Dowdell.

- 1625. ADVANCED METALLOGRAPHY FOR CHEMICAL STUDENTS. Metallography of the non-ferrous metals with a study of the constitution diagrams, properties, and uses of important commercial alloys. Laboratory work. MR. HARDER, MR. DOWDELL.
- 163f,164w,165s. ADVANCED METALLOGRAPHY. Technical and scientific research. The study of steel rails, automobile and locomotive parts, tool steels, etc. Special problems in metallography with outside reading. Seminar work on the recent advances in metallography. MR. HARDER.
- 201f,202W,203S. ADVANCED METALLOGRAPHY FOR GRADUATE STUDENTS. Intended primarily for research work. Mr. Harder.

MILITARY SCIENCE

Professor GIRARD STURTEVANT, Colonel, Infantry, Chairman; Assistant Professors BEN W. FEILD, Major, Infantry; LAURENCE T. WALKER, Major, Coast Artillery Corps; LEE R. WATROUS, JR., Major, Coast Artillery Corps; HARRY C. INGLES, Major, Signal Corps; EDWARD G. SHERBURNE, Major, Infantry; EDGAR, B. MOOMAU, 1st Lieutenant, Infantry; HAL M. ROSE, 1st Lieutenant, Cavalry; Instructors ALFRED BRANDT, Master Sergeant, Infantry; HARRY E. STRIDER, Master Sergeant, Signal Corps; JOSEPH HAVLICEK, Regimental Commissary Sergeant, Retired; JOSEPH LEES, Ist Sergeant, Retired; JOHN MCWIL-LIAMS, 1st Sergeant, Retired; WILLIAM R. FINKE, 1st Sergeant, Coast Artillery Corps; WILLIAM L. HOGAN, 1st Sergeant, Coast Artillery Corps; AUBREY R. DUNKUM, 1st Sergeant, Coast Artillery Corps; KENNA B. CALDWELL, Sergeant, Coast Artillery Corps; HENRY W. BROWN, Sergeant, Coast Artillery Corps; CLARENCE G. LANGE, Sergeant, Field Artillery; EDMUND T. MCCANN, Sergeant, Infantry; FRED LILLIE, Sergeant, Infantry; PRESTICE B. RHODES, Sergeant, Infantry; CLARENCE C. SHELTON, Sergeant, Infantry; HERMAN SMITH, Sergeant, Infantry; CASPER M. HECKEMEYER, Sergeant, Infantry.

COURSES

No.	Title	Hrs.	Required of	Prereq. courses
T	First-year Basic Course R.O.T.C	3	†All fr.	None
2a	Second-year Basic Course R.O.T.C.,			
	Infantry	3	*Soph.	I
2b	Second-year Basic Course R.O.T.C.,			
	Coast Artillery	• 3	Soph.	I
2C	Second-year Basic Course R.O.T.C.,			
	Signal Corps	3	Soph.	I

* Work in military science and tactics for sophomores will open on Friday, September 16, at 8:30 a.m., and continue for ten days. Satisfactory completion of Course 2a, 2b, or 2c at that time is required of all sophomores. This course applies only to sophomores, who are required to leave the following May 1 for field work.

† Must be legally eligible for enrolment in Reserve Officers' Training Corps.

DEPARTMENTAL STATEMENTS

MINE PLANT AND MECHANICS

Professor Elting H. Comstock; Assistant Professors Anders J. Carlson, James C. Sanderson.

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
ıf	Algebra and Solid Geometry	. б		B fr.	
2f	Algebra	. 6		A fr.	
35	Algebra	• 4		B fr.	r f
4 W	Trigonometry	. 6		All fr.	
5s	Analytical Geometry	. 6		All fr.	4 W
6f	Calculus	• 4		All soph.	5S
7 W	Calculus	. 3		All soph.	6f
8s -	Calculus	. 6		All soph.	7 W
9f	Mechanics	. 5		Jr.E.M.&Met.E.	8s
IOW	Mechanics of Materials	. 5		Jr.E.M.&Met.E.	9f
IIS	Mechanics of Materials	• 5		Jr.E.M.&Met.E.	IOW
12f	Mine Plant	. 6		Jr.E.M.&Met.E.	8s
I 3W	Mine Plant	. б		Jr.E.M.	12f
14S	Mine Plant	. 6		Jr.E.M.	13W
15W	Metallurgical Plant	. 3		Jr.Met.E.	12f
16s	Metallurgical Plant	- 3		Jr.Met.E.	15W
17f	Hydraulics and Water-Power	. 5	2	Sr.E.M.&Met.E.	IIS
18f	Engineering Construction		8	Sr.E.M.	IIS
19W	Mine-Plant Design		9	Sr.E.M.	18f
205	Mine-Plant Design		12	Sr.E.M.	19W

- If. ALGEBRA'AND SOLID GEOMETRY. Equations, involution and evolution, theory of exponents, surds, quadratic equation, theory of logarithms, determinants. Demonstrations of most important theorems of solid geometry. Volumes, approximate volumes, prismoidal formula, etc. Mr. SANDERSON.
- 2f. ALGEBRA. Functions, functional notation, factor and remainder theorems, factors and values of functions, development of functions, progressions, series, theory of equations, permutations and combinations, theory of logarithms, determinants. MR. COMSTOCK, MR. SANDERSON.
- 35. ALGEBRA. Continuation of 1f. Functions, functional notation, factor and remainder theorems, factors and values of functions, development of functions, progressions, series, theory of equations, permutations and combinations. Mr. SANDERSON.
- 4w. TRIGONOMETRY. Trigonometric ratios, right triangles, definitions of trigonometric functions, analytic relations, trigonometric equations, etc., solution of spherical triangles. Mr. COMSTOCK, Mr. SANDERSON.
- 55. ANALYTICAL GEOMETRY. Systems of coördinates, loci, equations, properties of straight line, transformation of coördinates, equations and properties of conics, equations of second degree, higher plane curves. space coördinates, point, plane, quadric surfaces, etc., empirical equations, graphic algebra. MR. SANDERSON.

- 66,7w,8s. CALCULUS. Differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, expansion of functions, indeterminate forms, partial derivatives, change of variable, elementary integration, undetermined coefficients, rationalization, formulas of reduction, some differential equations of mechanics. Mr. SANDERSON.
- 9f. MECHANICS. Composition and resolution of forces, laws of equilibrium, practical applications, rectilinear motion, circular motion, curvilinear motion in general, dynamics of rigid bodies, impact, work and energy. MR. CARLSON.
- IOW,IIS. MECHANICS OF MATERIALS. Mechanical and elastic properties of materials of construction; beams, columns, shafts, hollow cylinders and spheres, rollers, plates; theory of internal stress; reinforced concrete. MR. CARLSON.
- 12f,13w,14s. MINE PLANT. Discussion of the machinery and appurtenances employed in the equipment of mines. Air compression, rock drills, mechanical features of hoisting, pumping, ventilation, underground transportation. Electricity applied to mining. MR. COMSTOCK.
- 15w,16s. METALLURGICAL PLANT. Power, air, and water supply for metallurgical plants. Mr. Comstock.
- 17f. HYDRAULICS AND WATER-POWER. Laws of the equilibrium, pressure and flow of liquids, hydrographs and mass diagrams, estimate of power to be developed at a power site, design of dams and hydro-electric plants, theory of water wheels and turbines, speed control, power-house equipment, transmission. MR. CARLSON.
- 18f. ENGINEERING CONSTRUCTION. Theory of structures, loading, analytic and graphic resolution of stresses in framed structures, stresses in mining structures, design of mining structures. MR. CARLSON.
- 19w,20s. MINE-PLANT DESIGN. A study of power possibilities, costs, etc., and designs' of a power plant, surface equipment, and structures for a mine. MR. COMSTOCK, MR. CARLSON.

MINING

Associate Professor WALTER H. PARKER; Instructor Louis S. Heilig.

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prerequisite courses
IS	Introductory Mining	• 4		All soph.	
2f	Exploration	• 5		Jr.E.M.&E.M.(Géol.)	IS
3W	Tunneling	• 5		Jr.E.M.&E.M.(Geol.)	2f
48	Mining Methods	• 5		Jr.E.M.&E.M.(Geol.)	3W
5s	Practical Mining		2 wks.	Jr.E.M.&Met.E.	Satisfactory comple-
					tion of junior vr.

			Le	c. or Lab.	
No.	Title		rec	hrs. hrs. Required of	Prereq. courses
6f	First Aid		*	All jr.	
51f	Mine Rescue		*	All sr.	
52f	Mining Methods	5		Sr.E.M.&E.M.(Geol.)	43
53W	Mine Management	5		Sr.E.M.&E.M.(Geol.)	52f
54s	Mine Administration	5		Sr.E.M.&Met.E.	53W
55f	Thesis		2	Sr.E.M.	4S
56w	Thesis		1.2	Sr.E.M.	55f
57S	Thesis		12	Sr.E.M.	56w

- **IS.** INTRODUCTORY MINING. Introductory mining course, preparatory to sophomore field trip. MR. HEILIG.
- 2f. EXPLORATION. Occurrence of ore-bodies, prospecting, exploration, boring, explosives, drilling, and blasting. Mr. HEILIG.
- 3w. TUNNELING. Tunneling, drifting, shaft-sinking, raising, and mining methods. Mr. PARKER.
- 4s. MINING METHODS. Underground mining methods and support of underground excavations. MR. PARKER.
- 55. PRACTICAL MINING. Study of mining operations. Mine plant and mining work in one or more mining camps. MR. PARKER, MR. COM-STOCK.
- 6f. FIRST AID. Course in first aid to the injured, given by the staff of the United States Bureau of Mines car.
- 51f. MINE RESCUE. Course in mine rescue, given by the staff of the United States Bureau of Mines car.
- 52f. MINING METHODS. Coal mining, open-pit work, quarrying, placer mining, hydraulic mining and dredging. Mr. PARKER.
- 53w. MINE MANAGEMENT. Mine drainage, mine ventilation, mine transportation, mine sanitation, mine hygiene, cost accounting, and mine examination. Mr. PARKER.
- 545. MINE ADMINISTRATION. Course in mining law, mine management and economics of mining. MR. PARKER.
- 55f. THESIS. Preparatory work on the mining thesis. MR. PARKER, MR. HEILIG.
- 56w. THESIS. Preparation of an original thesis on some mining project, covering the exploration and development of a mining property. MR. PARKER.
- 57s. THESIS. Completion of thesis project. MR. PARKFR.

^{* 15} hours a week.

MINING ENGINEERING

Associate Professor EDWIN M. LAMBERT.

COURSES

No.	Title	Lec. or rec. hrs.		Required of	Prereq. cours^s
ıf	Mine-Surveying	. 3		All soph.	Math. 4w
2W	Mine-Surveying	• 3		All soph.	ıf
3s	Mine-Surveying	. 3	4	All soph.	2 W
4S	Field Work		7 wks.	All soph.	3S
5W	Mine-Mapping		6	All jr.	4S
бs	Mine-Mapping		6	Jr.E.M.&Met.E.	5w

- If-2w-3s. MINE-SURVEYING. Theory and problems in mine-surveying including land subdivision, stadia measurements, triangulation, railroad curves and cross-sections, computation of areas by coördinates; differential leveling, topographic map-reading, solar observations, shaft plumbing, underground traversing and leveling. MR. LAMBERT.
- 45. FIELD WORK. Practice in general plane surveying during the month of May. Practice in underground surveying during the first three weeks of June. This work is given on the iron ranges of Minnesota. MR. LAMBERT, MR. CARLSON.
- 5w-6s. MINE-MAPPING. Mine-mapping in accordance with prevalent practice in mining districts. Ore and stripping estimates and mine maps based on Mesabi Range practice. MR. CARLSON, MR. HEILIG.

PHYSICS

Professors Henry A. Erikson, Anthony Zeleny; Professorial Lecturer Louallen F. Miller.

COURSES

		Lec. or	Lab.		
No.	Title	$rec.\ hrs.$	hrs.	Required of	Prereq. courses
3f	Elements of Mechanics	. 3		All soph.	Math. 5s
4f	Mechanics Laboratory		2	All soph.	With 3f
23W	Heat	. 3		All soph.	3f
24W	Heat' Laboratory		2	All soph.	4f and with 23w
43s	Magnetism and Electricity	. 3		All soph.	3f
44S	Magnetism and Electricity Lab		2	All soph.	4f and with 43s

- 3f. ELEMENTS OF MECHANICS AND SOUND. Mechanics of solids, fluids, wave motion, and sound. A study of the simpler fundamental principles. First part of a general Course 3, 23, 33, 43. Course 4 should be taken in conjunction with this course. MR. ERIKSON, MR. MILLER.
- 4f. ELEMENTS OF MECHANICS AND SOUND LABORATORY. Measurements in the mechanics of solids, fluids, wave motion, and sound; the laboratory part supplementing Course 3. One two-hour session in the laboratory a week. MR. ERIKSON, MR. MILLER.

36

- 23w. HEAT. A study of the principles underlying heat phenomena. Course 24 should be taken in conjunction with this course. MR. MILLER.
- 24w. HEAT LABORATORY. The laboratory part supplementing Course 23. One two-hour session in the laboratory a week. Mr. MILLER.
- 4.35. MAGNETISM AND ELECTRICITY. A study of the principles underlying magnetic and electric phenomena. Course 44 should be taken in conjunction with this course. MR. ZELENY, MR. MILLER.
- 44S. ELECTRICAL LABORATORY. The laboratory part supplementing Course 43. One two-hour session in the laboratory a week. Mr. ZELENY, MR. MILLER.

ROMANCE LANGUAGES

Professors Everett W. Olmsted, Irville C. LeCompte, Colbert Searles; Associate Professors Ralph House, Ruth S. Phelps.

No.	Title Re	c. hrs	Required of	Prereq. courses
*1-2	Beginning French	5	Jr.E.M.(Geol.)	
3-4	Intermediate French	5	Elective	I-2
*21-22-23	Survey French Lit	3	Elective	` 3-4
*I-2	Beginning Spanish	5	Jr.E.M.(Geol.)	
3-4	Intermediate Spanish	5	Elective	· I-2
*65-66-67	Spanish Literature	3	Elective	3-4

- 1-2. BEGINNING FRENCH. Stress on accurate pronunciation, reading, reading vocabulary, and the essentials of grammar. Daily oral and written exercises (dictation and reproduction in French).
- 3-4. INTERMEDIATE FRENCH. French grammar, composition, and reading; increased use of French in the classroom. Selections from modern authors.
- 21-22-23. GENERAL SURVEY OF FRENCH LITERATURE. Lectures, recitations, and assigned readings. Designed to cover the whole period in historical outline. Selections from representative authors.
- 1-2. BEdINNING SPANISH. Pronunciation, grammar, oral exercises, and translation.
- 3-4. INTERMEDIATE SPANISH. Review of grammar, composition, conversation, and reading.
- 65-66-67. SPANISH LITERATURE. Discussions based upon texts and collateral reading.

^{*} All quarters must be completed before credit is given in any one quarter. NOTE: Beginning and intermediate courses are offered every quarter.

\$ • •

The Bulletin of the University of Minnesota

C 66uZmi

IQRR/R

The School of Mines Announcement for the Year 1922-1923

UNIVERSITY OF ALL

OCT 4 1923

Vol. XXV No. 26 June 21 1922

Entered at the post-office in Minneapolis as second-class matter Minneapolis, Minnesota

Accepted for mailing at special rate of postage provided for in section 1103, Act of October 3, 1917, authorized July 12, 1918

1922	1922 19			
JULY	JANUARY	JULY		
Su Mo Tu W Th Fr Sa	Su Mo Tu W Th Fr Sa	Su Mo Tu W Th Fr Sa		
	1 2 3 4 5 6	1 2 3 4 5 6 7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
23 24 25 26 27 28 29	28 29 30 31	$29 30 31 \dots \dots \dots$		
30 31	<u></u>			
AUGUST	FEBRUARY	AUGUST		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
13 14 15 16 17 18 19	4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
20 21 22 23 24 25 26	18 19 20 21 22 23 24	19 20 21 22 23 24 25		
27 28 29 30 31	$25 26 27 28 \dots \dots \dots $	26 27 28 29 30 31		
	<u></u>			
SEPTEMBER	MARCH	SEPTEMBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
10 11 12 13 14 15 16	11 12 13 14 15 16 17	9 10 11 12 13 14 15		
17 18 19 20 21 22 23 24 25 26 27 28 29 30	18 19 20 21 22 23 24 25 26 27 28 29 30 31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
24 25 26 27 28 29 30	25 26 21 28 29 50 51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
OCTOBER	APRIL	OCTOBER		
	1 2 3 4 5 6 7	1 1 2 2 4 5 6		
8 9 10 11 12 13 14	8 9 10 11 12 13 14	7 8 9 10 11 12 13		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$29 30 31 \dots \dots \dots$	$29 30 \ldots \ldots \ldots \ldots \ldots \ldots$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
NOVEMBER	MAY	NOVEMBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
19 20 21 22 23 24 25	20 21 22 23 24 25 26	$18 \ 19 \ 20 \ 21 \ 22 \ 23 \ 24$		
26 27 28 29 30	27 28 29 30 31	25 26 27 28 29 30		
	<u></u>			
DECEMBER	JUNE	DECEMBER		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
10 11 12 13 14 15 16	10 11 12 13 14 15 16	$9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15$		
17 18 19 20 21 22 23 24 25 26 27 28 29 30	17 18 19 20 21 22 23 24 25 26 27 28 29 30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
24 25 26 27 28 29 30 31	24 25 26 27 28 29 30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	•••••••••••••••			

UNIVERSITY CALENDAR

			1922-23
1922 September	15	Friday	Sophomores, School of Mines, report
expremiser	- 3		for military drill, 8:30 a.m.
September	16	Saturday	Payment of fees closes, except for new students
September	19	Tuesday	Juniors and seniors, School of Mines, report for completion of field work
September	22-26		Examinations for removal of conditions and entrance examinations; see below
			Physical examinations for all new stu- dents
September	25-26		Registration days
September	26	Tuesday	Payment of fees for new students closes
September	27	Wednesday	Fall quarter begins, 8:30 a.m.
October	14	Saturday	Class Scrap Day; classes dismissed the third and fourth hours
October	26	Thursday	Senate meeting, 4:30 p.m.
November	4	Saturday	Home Coming Day; classes dismissed
			the third and fourth hours
November	7	Tuesday	General Election Day; a holiday
November	II	Saturday	Armistice Day; a holiday
November	30	Thursday	Thanksgiving Day; a holiday
December	14	Thursday	Senate meeting, 4:30 p.m.
December	20	Wednesday	Fall quarter ends, Christmas vacation be-
			gins, 5:20 p.m.
1923			
January	4	Thursday	Christmas vacation ends, winter quarter
January	4	Indisday	begins, 8:30 a.m.
February	12	Monday	Lincoln's Birthday; a holiday
February	15	Thursday	Senate meeting, 4:30 p.m.
February	22	Thursday	Washington's Birthday; a holiday
March	23	Friday	Winter quarter ends, spring vacation be-
March	23	Inday	gins, 5:20 p.m.
April	4	Wednesday	Spring vacation ends, spring quarter be- gins, 8:30 a.m.
May	I	Tuesday	Field work for sophomores and juniors in School of Mines begins
May	17	Thursday	Senate meeting, 4:30 p.m.
May	30	Wednesday	Memorial Day; a holiday
June	17	Sunday	Baccalaureate service
June	20	Wednesday	Fifty-first annual commencement
Jupe	20	Wednesday	Spring quarter closes, 5:20 p.m.
June	23-25		Registration days for Summer Session
June	26	Tuesday	Summer Session and summer quarter
			begin
July	4	Wednesday	Independence Day; a holiday
August	3	Friday	Summer Session closes
September	7	Friday	Summer quarter closes

Program	of	Sub	plementary	Examinations
---------	----	-----	------------	--------------

Friday,	Sept. 22	9 -1 2 a.m.	Physics
		2-5 p.m.	Chemistry, experimental engineering
Saturday,	Sept. 23	9-12 a.m.	Mathematics and mechanics
		2-5 p.m.	Drawing and descriptive geometry
Monday,	Sept. 25	9-12 a.m.	Metallurgical subjects
		2-5 p.m.	Electric power
Tuesday,	Sept. 26	9-12 a.m.	Geology and mineralogy
		2-5 p.m.	Mining subjects

THE SCHOOL OF MINES

FACULTY

LOTUS DELTA COFFMAN, Ph.D., President

WILLIAM WATTS FOLWELL, LL.D., President Emeritus

¹CYRUS NORTHROP, LL.D., President Emeritus

WILLIAM R. APPLEBY, M.A., Dean, and Professor of Metallurgy

PAUL H. M.-P. BRINTON, Ph.D., Professor of Analytical Chemistry

THOMAS M. BRODERICK, Ph.D., Assistant Professor of Geology

ANDERS J. CARLSON, C.E., Assistant Professor of Mine Plant and Mechanics

PETER CHRISTIANSON, B.S., E.M., Professor of Metallurgy

ELTING H. COMSTOCK, M.S., Professor of Mine Plant and Mechanics

JAMES DAVIES, Ph.D., Assistant Professor of German

WILLIAM H. EMMONS, Ph.D., Professor of Geology and Mineralogy

- HENRY A. ERIKSON, B.E.E., Ph.D., Professor of Physics
- LEO J. FARRELL, Captain Infantry, U.S.A., Assistant Professor of Military Science and Tactics

ISAAC W. GEIGER, Ph.D., Assistant Professor of Chemistry

FRANK F. GROUT, M.S., Ph.D., Professor of Geology and Mineralogy

OSCAR E. HARDER, Ph.D., Associate Professor of Metallography

WILLIAM H. KIRCHNER, B.S., Professor of Drawing and Descriptive Geometry

RAYMOND E. KIRK, M.S., Assistant Professor of Chemistry

SAMUEL KROESCH, Ph.D., Assistant Professor of German

EDWIN M. LAMBERT, M.E., Professor of Mining Engineering

IRVILLE C. LECOMPTE, Ph.D., Professor of Romance Languages

LOUALLEN F. MILLER, B.S., Ph.D., Assistant Professor of Physics

HOWARD D. MYERS, B.S. in C.E., Assistant Professor of Drawing and Descriptive Geometry

EVERETT W. OLMSTED, Ph.D., Litt.D., Professor of Romance Languages

WALTER G. PARKER, E.M., Associate Professor of Mining

LEVI B. PEASE, M.S., Professor of Metallurgy

RUTH S. PHELPS, M.A., Associate Professor of Romance Languages

BURTON J. ROBERTSON, E.E., Assistant Professor of Mechanical Engineering

HAL M. ROSE, Captain, U.S.A., Assistant Professor of Military Science and Tactics

FRANK B. ROWLEY, M.E., Professor of Mechanical Engineering

HENRY H. RUTHERFORD, B.A., Lieutenant Colonel, Medical Corps, U.S.A., Assistant Professor of Military Science and Tactics

WILLIAM T. RYAN, E.E., Associate Professor of Electrical Engineering

JAMES C. SANDERSON, Ph.D., Assistant Professor of Mine Plant and Mechanics

CARL SCHLENKER, B.A., Professor of German

COLBERT SEARLES, Ph.D., Professor of Romance Languages

GEORGE D. SHEPARDSON, M.A., M.E., D.Sc., Professor of Electrical Engineering

¹ Died April 3, 1922.

- EDWARD G. SHERBURNE, Major, U.S.A., Assistant Professor of Military Science and Tactics
- CHARLES F. SHOOP, B.S., Associate Professor of Mechanical Engineering CHARLES F. SIDENER, B.S., Professor of Chemistry
- M. CANNON SNEED, Ph.D., Associate Professor of Chemistry
- NEWTON W. SPEECE, Captain Infantry, U.S.A., Assistant Professor of Military Science and Tactics
- CLINTON R. STAUFFER, B.S., Ph.D., Professor of Geology
- GIRARD STURTEVANT, Colonel Infantry, U.S.A., Professor of Military Science and Tactics
- RUSSELL C. THROCKMORTON, Captain Infantry, U.S.A., Assistant Professor of Military Science and Tactics
- ANDREW C. TYCHSEN, Captain Infantry, U.S.A., Assistant Professor of Military Science and Tactics
- LAURENCE T. WALKER, Major, U.S.A., Assistant Professor of Military Science and Tactics
- JAMES E. WARE, Lieutenant Colonel, U.S.A., Retired, Assistant Professor of Military Science and Tactics
- LEE R. WATROUS, JR., Major, U.S.A., Assistant Professor of Military Science and Tactics
- JAMES D. WATSON, JR., Captain Signal Corps, U.S.A., Assistant Professor of Military Science and Tactics
- FREDERICK R. WUNDERLICH, D.D.S., Major Dental Corps, U.S.A., Assistant Professor of Military Science and Tactics
- ANTHONY ZELENY, M.S., Ph.D., Professor of Physics
- IRA S. ALLISON, B.A., Instructor in Geology
- CHARLES BOEHNLEIN, B.S., M.E., Instructor in Mathematics and Mechanics
- EARL J. BLONSCHINE, Private First Class, D.E.M.L., Instructor in Military Science and Tactics
- ALFRED BRANDT, Technical Sergeant, D.E.M.L., Instructor in Military Science and Tactics
- HARRY W. BROWN, Sergeant, D.E.M.L., Instructor in Military Science and Tactics
- HENRY DAHL, First Sergeant Retired, D.E.M.L., Instructor in Military Science and Tactics
- RALPH L. DOWDELL, Met.E., Instructor in Metallography
- AUBREY R. DUNKUM, Staff Sergeant, D.E.M.L., Instructor in Military Science and Tactics
- JOHN W. GRUNER, B.A., M.S., Instructor in Geology
- JOSEPH HAVLICEK, Regimental Commissary Sergeant, D.E.M.L., Instructor in Military Science and Tactics
- LOUIS S. HEILIG, E.M., Instructor in Mining
- CARL JENSEN, Regimental Supply Sergeant, U.S.A., Retired, Instructor in Military Science and Tactics
- ERWIN H. KERSTEN, E.M., Instructor in Metallurgy
- CLARENCE G. LANGE, Sergeant, D.E.M.L., Instructor in Military Science and Tactics

FACULTY

- EDMUND T. MCCANN, Sergeant, D.E.M.L., Instructor in Military Science and Tactics
- JOHN MCWILLIAMS, First Sergeant, D.E.M.L., Instructor in Military Science and Tactics
- NORVILLE C. PERVIER, M.S., Instructor in Chemistry
- ORRIN W. POTTER, E.M., Instructor in Drawing and Descriptive Geometry
- CLAYTON M. REASONER, M.E., Instructor in Metallography
- LANDON A. SARVER, M.A., Instructor in Chemistry
- GEORGE M. SCHWARTZ, M.A., Instructor in Geology
- ELWYN L. SMITH, B.S., Instructor in Metallurgy
- HARRY E. STRIDER, Technical Sergeant, D.E.M.L., Instructor in Military Science and Tactics
- GEORGE W. SWENSON, B.S. in E.E., Instructor in Electrical Engineering
- GEORGE A. THIEL, M.A., Instructor in Geology
- W. COURTNEY WERNER, B.A., Instructor in Geology
- JOE WIER, Sergeant, D.E.M.L., Instructor in Military Science and Tactics ELIZABETH B. HENDERSON, Librarian

GENERAL INFORMATION

The School of Mines was established by the Board of Regents in 1888, upon recommendation of the general faculty of the University. The buildings and laboratories of the school are located on the main campus of the University. The mining districts of Minnesota are within a few hours, by rail, of Minneapolis. The heartiest coöperation exists between the various mine managements and the school, so that the mining properties are at all times open to parties from the school for observation and study trips. Practical surveying, geological field work, and underground work are carried on in one or more of the districts. Students in the School of Mines have, therefore, all the advantages afforded by a large university combined with ample opportunity for field observation and experience.

The School of Mines occupies the new building provided by the Legislature of 1913. In the basement are the assay and electrometallurgical laboratories, together with machinery room, instrument room, balance room, furnace rooms, and necessary storerooms. On the first floor are the administrative offices, and offices and lecture rooms of the departments of Metallurgy and Mine Plant and Mechanics. On the second floor are the offices, lecture rooms, and drafting rooms of the Department of Mining, the ore-dressing laboratory, and the library of the school. On the third floor are the offices, laboratories, and lecture rooms of the Department of Metallography, Department of Mining Engineering, junior drafting room, darkrooms, blue printing room, and offices and computing rooms for the branch of the experiment station serving the tax commission.

DEGREES

In the School of Mines there are three regular courses of study, viz., Mining Engineering, Mining Engineering specializing in Geology, and Metallurgy, leading to the degree of engineer of mines (E.M.), engineer of mines in geology [E.M.(Geology)], and metallurgical engineer (Met.E.) respectively.

The degree of metallurgical engineer may be conferred upon a candidate who received the degree of engineer of mines in four years, and vice versa, provided such candidate completes an additional year's work at the school and presents a suitable thesis.

Students in the College of Science, Literature, and the Arts, in the College of Engineering and Architecture, and in the School of Chemistry, who contemplate taking a degree in this school after completing their course, are recommended to select their electives with reference to as full a preparation as possible for the technical work of the course they propose to enter.

CLASSIFICATION OF SUBJECTS

The work falls under the following subdivisions, supplemented by thoro courses in mechanics, mathematics, surveying, physics, chemistry, and the necessary theory and practice of structural, mechanical, and electrical engineering. (a) Geology—to determine the location of the ore. (b) Mineralogy to determine its nature. (c) ...lssaying—to determine whether or not it has value for treatment. (d) Mining engineering—to furnish material for treatment. (e) Mine plant—to provide the physical equipment for mining and treating the ore. (f) Ore-testing—to determine best methods of treatment. (g) Ore-dressing—to furnish products for metallurgical treatment. (h) Metallurgy—to smelt and refine ores and ore-dressing products; reduction to metals. (i) Metallography—to study metals and their alloys.

EXPERIMENT STATION

The School of Mines Experiment Station was established in 1911 and is maintained to promote the development of the mining and mineral resources of the state; to assay specimens of ores, rocks, clays, and minerals; to make such assays free of charge for private parties subject to such regulations as the Board of Regents may deem necessary; to make mining and metallurgical experiments in the treatment of such substances and in the utilization of mining and metallurgical by-products; to investigate methods of mining and the use of explosives; to undertake such other mining and metallurgical problems as may seem desirable; to make all ore estimates for the tax commission, and to do such other work along the lines above outlined as may be requested by other state departments. Coöperation has been effected with the United States Bureau of Mines, the United States Geological Survey, the Minnesota Geological Survey, and the School of Chemistry.

The experiment station is prepared to assist citizens interested in these lines of work, and to assay specimens of ore, rocks, clays, and minerals found within the state, free of charge.

In submitting samples the sender must state the exact location in which each sample was found, giving all possible additional information. This information, together with results of any test or analysis, will be on file and available to the public at the office of the station. Citizens desiring free assay privileges must agree to give accredited representatives of the School of Mines Experiment Station and of the Geological Survey access to the property should they desire to visit the same for purposes of examination and geological study.

Correspondence will receive prompt attention, but consultations generally prove more satisfactory.

Each sample should be numbered for identification and bear the name and address of the sender. All shipments must be delivered to the Minnesota School of Mines, charges prepaid. Shipping tags will be furnished upon request.

Address all communications to William R. Appleby, Director, Minnesota School of Mines Experiment Station, the University of Minnesota, Minneapolis, Minnesota.

ADMISSION

The courses leading to the degrees of engineer of mines, engineer of mines (in geology), and metallurgical engineer may be completed in four years.

Freshmen will be divided into two section as follows:

a. Those entering with credits in higher algebra and solid geometry.

b. Those entering without credits in higher algebra and solid geometry. Students in section b will carry a special course in mathematics during their freshman year.

Details as to admission and entrance requirements, description of subjects accepted for admission, and list of fees and expenses will be found in the bulletin of general information, which will be sent to any address upon application to the registrar, the University of Minnesota, Minneapolis.

UNCLASSED STUDENTS

No unclassed students will be admitted to the School of Mines.

ADMISSION TO ADVANCED STANDING

Students who desire to obtain advanced standing must present their applications and certificates to the departments concerned, obtain a written statement from the department, showing the exact credit allowed, and present this to the Enrolment Committee of the School of Mines.

FEES

Tuition fees (per quarter)	
Residents of Minnesota	30.00
Non-residents	40.00
Deposit (first quarter only)	5.00
Military deposit (required of all students taking drill)	10.00
Minnesota Union (per quarter)	I.00
Post-office box (per quarter)	.20
Special fees	
Examination for removal of condition	I.00
Examinations for credit (after the first six weeks in residence)	5.00
Special examinations	5.00
Chemistry deposit	5.00
	Residents of Minnesota

Penalty Fees

Registration penalties.—A penalty fee for late registration, late change of registration, or late payment of fees shall be two dollars (\$2) and one dollar (\$1) additional for each day of delay after classes begin, provided that no student shall pay more than twelve dollars (\$12) of penalty in any quarter.

GRADUATION

Students completing courses of study to the satisfaction of the faculty are entitled to receive the appropriate degrees. Any person may undergo, at suitable times, examination in any subject. If such person pass in all the studies and exercises of a course, he is entitled to the appropriate degree, provided that at least the full year be spent at the University before such degree shall be granted, and provided the examination in every case be held before a committee of the faculty appointed for that purpose.

Seniors must be in regular attendance at all classes until after the final examination for the third quarter. Irregular attendance will debar a student from entering all final examinations.

THESIS

The thesis work is intended to bring in review and connect the work in mining and metallurgy, geology and mineralogy, mechanical and electrical engineering, mathematics, and mechanics.

It has been found that this purpose is most satisfactorily accomplished by assigning to each student a project, embracing the prospecting, development, and equipment of a group of mining claims, for candidates for the degree of engineer of mines; the investigation of a problem in mining geology, for candidates for the degree of engineer of mines (in geology); and the investigation of a metallurgical problem, for candidates for the degree of metallurgical engineer.

As much latitude as possible will be allowed the student in the choice of type of deposit and location. He must select a suitable project during the summer preceding the senior year. Outlines are furnished setting forth the lines of investigation necessary to obtain the required data. The junior field work affords ample opportunity therefor.

Prior to the reopening of field work at the School of Mines, Tuesday, September 19, 1922, each student is required to submit to the department concerned an outline embodying the principal features of the project, together with a topographic map and a sufficient number of photographs to represent clearly the locality. Unless this outline is submitted when due and is accepted by the department, final registration for the first semester, senior year, will not be permitted.

Students may, if they so desire, take a reasonable number of samples on which to make assays and hand laboratory tests during the ore-testing laboratory work given in the first semester, senior year.

All preliminary work must be done and final work on the project must be under way by December I. On April 7 the text of the thesis must be completed and submitted for final approval. Completed work (typewritten and bound) together with all tracings and one set of clear blue prints therefrom must be in and accepted not later than April 27. Theses will not be accepted or examined after these dates. Unless the above conditions are complied with no student can expect to graduate with his class.

These theses shall become the property of the school.

SPECIAL NOTES

Students failing to receive a quarter mark of 75 per cent in any subject shall have the privilege of a supplementary examination before the opening of the following year.

Each student must obtain from the registrar his average in all subjects and present himself for supplementary examinations, according to the program on page 4.

Failure of the registrar to notify a student of deficiencies will not be accepted as a reason for neglecting to report for necessary supplementary examinations. Students failing to report for supplementary examinations will be compelled to take work over in class as in case of failures. Students failing to pass supplementary examinations will become members of the succeeding class and must register for those subjects in which they have failed. They may take in addition other subjects not more than one year in advance of their class, with the exception of mining, mining engineering, and metallurgical courses, based upon requirements of the various courses and daily program. They may also take certain electives in other colleges provided suitable arrangements can be made.

Students failing to receive a quarter mark of 65 per cent in any subject shall not be allowed to pursue any dependent subject except by permission of the faculty. A student may be permitted to take the dependent subject conditionally for six weeks, at the end of which time he must have a passing grade in the subject if he is to continue it for the remainder of the quarter.

The faculty may exclude students from attending classes in any subject upon recommendation of the department concerned.

All students must report in time to make suitable arrangements with departments concerned in case of conflicts in program.

Students failing to present themselves for final examination for any quarter will be given zero on the examinations.

Students whose absences in any quarter exceed 20 per cent of the scheduled class hours will not be permitted to take examinations without special permission of the faculty.

Sophomores and juniors who, at the end of the winter quarter, are deficient in 15 hours or more of any subjects, or who, at the end of the spring quarter examination period for sophomores and juniors are deficient in any subject of the preceding year will not be eligible to take the spring field trip. Sophomores who are deficient in one or more quarters of surveying shall not be eligible for the sophomore field trip unless recommended for the trip by the Department of Mining Engineering and declared eligible by the faculty.

All subjects elected in other colleges become part of the School of Mines curriculum. All students are required to receive credits in these subjects before graduation.

During the academic year students will be held responsible for the receipt of official communications sent to them through the University postoffice. During the summer vacation they will be held responsible for the receipt of such communications sent to the home address given on registration blank for the preceding academic year, unless formal notification of their correct address is filed with the registrar and the dean.

COURSES OF STUDY

UNIFORM CURRICULUM TO END OF SOPHOMORE YEAR

The courses leading to the degrees of engineer of mines, engineer of mines (in geology), and metallurgical engineer are uniform for the first two years.

Freshmen will be divided into two sections as follows:

a. Those entering with credits in advanced algebra and solid geometry.

b. Those entering without credits in advanced algebra and solid geometry.

Subjects with the prefix a are to be taken by freshman in section a; those with the prefix b are to be taken by freshmen in section b; and those without prefix are to be taken by students of both sections.

FRESHMAN YEAR

First Quarter

Chemistry 4f or 14f,* General Inorganic, 6 or 9† Drawing 11f, Engineering Drawing, 10 a. Mathematics 2f, Algebra, 6 b. Mathematics 1f, Algebra and Solid Geometry, 6 Geology 23f, Elements of Mineralogy, 8 Military Science 1, Basic Course R.O.T.C., 3

Second Quarter

Chemistry 5w or 15w, General Inorganic, 6 or 9, Chem. 4f or 14f Drawing 12w, Engineering Drawing, 8, Draw. 11f Mathematics 4w, Trigonometry, 6 Metallurgy 1w, Assaying, 4, Chem. 4f or 14f, Geol. 23f Metallurgy 2w, Assaying Laboratory, 8, Chem. 4f or 14f, Geol. 23f Geology 24w, Elements of Mineralogy, 4, Geol. 23f Military Science 1, Basic Course R.O.T.C., 3

Third Quarter

Chemistry 16s, Qualitative Analysis, 9, Chem. 5w or 15w Drawing 13s, Engineering Drawing, 8, Draw. 12w Mathematics 5s, Analytical Geometry, 6, Math. 4w b. Mathematics 3s, Algebra, 4, Math. 1f Geology 25s, Elements of Mineralogy, 8, Geol. 24w Military Science 1, Basic Course R.O.T.C., 3

^{*} The suffixes f, w, or s, after the course number indicates the quarter in which a course is offered—fall, winter, or spring quarter respectively. Two or three suffixes indicate that a course is offered in each of the corresponding quarters.

[†] Figure following the descriptive name of a course indicates number of hours per week. Course names following indicate prerequisite courses.

SOPHOMORE YEAR

First Quarter

Drawing 14f, Descriptive Geometry, 3, Draw. 13s, Math. 5s

Geology 105f, Rock Study, 4, Geol. 25s

Mathematics 6f, Calculus, 4, Math. 5s

Metallurgy 3f, General, 3, Met. 1w, 2w, Chem. 16s

Mining Engineering 1f, Mine-Surveying, 3, Math. 4w

Physics 3f, Elements of Mechanics, 3, Math. 5s

Physics 4f, Mechanics Laboratory, 2, Math. 5s

Military Science 2a, 2b, or 2c, Basic Course R.O.T.C.

Work in military science and tactics for sophomores will open on Friday, Sept. 15 at 8:30 a.m., and continue for ten days. Satisfactory completion of Course 2a, 2b, or 2c, at that time is required of all sophomores. This course applies only to sophomores who are required to leave the following May 1 for field work.

Second Quarter

Chemistry 28w, Quantitative Analysis, 8, Chem. 16s

Drawing 15w, Drafting, 4, Draw. 14f

Geology IW, General, 3, Geol. 105f

Geology 106w, Petrography, 4, Geol. 105f

Mathematics 7w, Calculus, 3, Math. 6f

Metallurgy 4w, Met. of Pig Iron, 3, Met. 3f

Mining Engineering 2w, Mine-Surveying, 3, Min. Eng. 1f

Physics 23w, Heat, 3, Phys. 3f

Physics 24w, Heat Laboratory, 2, Phys. 4f

Third Quarter

Geology 2s, General, 7, Geol. 105f

Mathematics 8s, Calculus, 6, Math. 7w

Metallurgy 5s, Wrought Iron and Steel, 3, Met. 4w

Mining 21s, Introductory Mining, 4

Mining Engineering 3s, Mine-Surveying, 7, Min. Eng. 2w

Physics 43s, Magnetism and Electricity, 3, Phys. 3f

Physics 44s, Magnetism and Elec. Lab., 2, Phys. 4f

Mining Engineering 4s, Field Work beginning about May 1, 7 weeks, Min. Eng. 3s.

Geology 85, Field Work beginning about June 20, 2 weeks, Geol. 2s Underground Mining Work, beginning about July 5

JUNIOR AND SENIOR YEARS

Courses Leading to the Degree of Engineer of Mines

JUNIOR / YEAR

First Quarter

Experimental Engineering, M.E. 84f, Elementary Lab., 4, with Mech. 12f Geology 73f, Economic, 3, Geol. 2s, 105f

Mechanics 9f, Mechanics, 5, Math. 8s.

Mechanics 12f, Mine Plant, 6, Math. 8s

Metallurgy 105f, Base Metals, 4, Met. 3f

Metallurgy 12f, Ore-Dressing, 3, Phys. 43s, Geol. 25s

Mining 30f, First Aid, I week

Mining 31f, Exploration, 5, Mining 21s

Second Quarter

Experimental Engineering, M. & M. 144w, Materials-Testing Lab., 4, with Mech. 10w

Mechanics 10w, Mechanics of Materials, 5, Mech. 9f

Mechanics 13w, Mine Plant, 6, Mech. 12f

Metallurgy 106w, Base Metals, 4, Met. 105f

Metallurgy 13w, Ore-Dressing, 3, Met. 12f

Mining 32w, Tunneling, 5, Mining 31f

Mining Engineering 5w, Mine-Mapping, 6, Min. Eng. 4s

Third Quarter

Mechanics 11s, Mechanics of Materials, 5, Mech. 10w.

Mechanics 14s, Mine Plant, 6, Mech. 13w

Metallurgy 107s, Precious Metals, 4, Met. 106w

Metallurgy 17s, Ore-Dressing Lab., 6, Met. 13w

Mining 33s, Mining Methods, 5, Mining 32w

Mining Engineering 6s, Mine-Mapping, 6, Min. Eng. 5w

Metallurgy 21s, Field Work in Metallurgy beginning about May I, 10 days, satisfactory completion of junior year

Mining 34s, Field Work in Mine Plant and Mining beginning about May 1, 2 weeks, satisfactory completion of junior year

SENIOR YEAR

First Quarter

Electrical Engineering 41f, Electric Power, 5, Phys. 43s

Geology 111f, Ore Deposits, 3, Geol. 73f, 106w

Mechanics 17f, Water Power, 7, Mech. 115

Mechanics 18f, Engineering Construction, 8, Mech. 11s

Metallurgy 6f, Ore-Testing, 2, Met. 107s

Metallurgy 7f, Ore-Testing Lab., 8, Met. 107s

Mining 41f, Mining Methods, 5, Mining 33s

Mining 40f, Mine Rescue, I week

Mining 44f, Thesis, 2, Mining 33s

Second Quarter

Experimental Engnieering, M.E., 181w, Advanced Lab., 4, Exp. Eng. M.E. 84f

Geology 112w, Petroleum, 3, Geol. 111f

Geology 80w, Advanced Historical, 3, Geol. 73f

Mech. 19w, Mine Plant Design, 9, Mech. 18f

Metallurgy 8w, Special Problems, 4, Met. 107s

Mining 42w, Mine Management, 5, Mining 41f

Mining 45w, Thesis, 12, Mining 44f

Third Quarter

Geology 113s, Problems in Ore Deposits, 4, Geol. 112w Mechanics 20s, Mine Plant Design, 12, Mech. 19w Metallurgy 9s, Special Problems, 8, Met. 107s Mining 43s, Mine Administration, 5, Mining 42w Mining 46s, Thesis 12, Mining 45w

DEPARTMENT OF MINING

The department is well supplied with samples of the smaller mine equipment, models, drawings, photographs, lantern slides, and mine maps. The lectures treat of prospecting, development, support of excavations, mining methods, mine administration, mining law, and the necessary allied subjects. The courses in mining extend through the sophomore, junior, and senior years.

FIELD WORK IN MINING

JUNIOR YEAR

At the end of the junior year students are required to study mine plant and mining methods in one or more mining districts under the direction of members of the faculty. This work begins about May I, and not over three weeks will be devoted to it. The work is carried on in the leading western metal-mining districts, the exact location to be announced in April of each year. The expenses for the trip are estimated at \$225. A deposit of \$50 must be made before starting on the trip to cover board and lodging and necessary side trips. Any balance will be returned at the close of the work in the field.

All notes, data, and sketches necessary for a complete report on the field work, must be fully and neatly recorded in notebooks. These notebooks will be collected at the close of the trip and returned to the student at the reopening of field work at the school. In judging the, character of the student's field work, equal importance will be attached to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below the standard that should be demanded of candidates for senior work. During the months of June, July, and August, the student is urged to spend at least six weeks in actual underground mining work in the West for which he may receive wages. The department will render all possible assistance in locating students in districts of their choice.

Field work will reopen at the School of Mines, Tuesday, September 19, 1922. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in mining and metallurgy must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: metallurgy, September 19 to 26, inclusive; mining and mine plant, September 27 to October 10, inclusive.

COURSES OF STUDY

On October 10 all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings, to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 10. These reports shall become the property of the school.

The completion of sophomore and junior field work is a requisite for graduation, and satisfactory evidence thereof must be submitted to the department. Should a student, for sufficient reason, fail to complete this work in regular course, he may, with the consent of the department, be permitted to pursue his regular studies. In all such cases, however, the degree will be withheld until all field work is completed.

DEPARTMENT OF MINING ENGINEERING MINE-SURVEYING

The work in surveying is given in the sophomore year and is designed primarily for mining engineers. The work begins with the elements of plane surveying, with special reference to the computations necessary, followed by the higher theoretical work in plane surveying and its application to the problems met in underground surveying. Beginning about May 1, the class devotes seven weeks to field work at some convenient point on the Mesabi, Cuyuna, or Vermilion Range. The exact location will be announced in March of each year. The expenses for this trip are estimated at \$150.

The students will be divided into squads of two to four. Each student will be required to complete satisfactorily a practical course in plane and underground surveying including exercises in chaining and taping; adjustment and use of surveying instruments; solar and stellar observations; laying out railroad tangents and curves; making earthwork estimates; and other problems. In addition each squad will be required to make a yardage estimate of the stripping of an open-pit mine; to transfer a meridian, from the surface, underground and make a complete survey of an underground mine.

The data obtained will be used in the course in mine-mapping during the winter quarter of the junior year.

A full equipment of surveying instruments of the latest and best types is furnished each squad for this work.

COURSES LEADING TO THE DEGREE OF ENGINEER OF MINES IN GEOLOGY

JUNIOR YEAR

First Quarter

Geology 61f or 65f, Blowpipe Analysis or Crystallography, 6, Geol. 25s Geology 73f, Economic, 3, Geol. 2s, 105f Geology 131f, Advanced Petrology, 6, Geol. 2s, 106w Geology 151f, Advanced General, 3, Geol. 73f

German 24f or 27f, or French 1f or 21f, or Spanish 1f or 65f, 5 or 3 Mechanics 9f, Mechanics, 5, Math. 8s Mining 30f, First Aid, 1 week

Mining 31f, Exploration, 5, Min. 21s

Second Quarter

Geology 124w, Struct. and Metamorphic, 3, Geol. 73f, 105f

Geology 132w, Advanced Petrology, 6, Geol. 2s, 106w

Geology 144w, Geologic Maps, 6, Geol. 73f

Geology 152w, Advanced General, 3, Geol. 73f

German 25w or 28w, or French 2w or 22w, or Spanish 2w or 66w, 5 or 3 :

Mechanics 10w, Mechanics of Materials, 5, Mech. 9f

Mining 32w, Tunneling, 5, Min. 31f

Mining Engineering 5w, Mine-Mapping, 6, Min. Eng. 4s

Third Quarter

Geology 125s, Struct. and Metamorphic, 6, Geol. 73f, 105f

Geology 133s, Advanced Petrology, 6, Geol. 2s, 106w

Geology 145s, Geologic Maps, 12, Geol. 73f

Geology 153s, Advanced General, 3, Geol. 73f

Mechanics 11s, Mechanics of Materials, 5, Mech. 10w

Mining 33s, Mining Methods, 5, Min. 32w

Geology 150s, Field Work in Geology beginning about May 1, six weeks, Geol. 125s

Geologic Field Work beginning about June 15 with geologic surveys or private companies

SENIOR YEAR

First Quarter

Geology 91f, Paleontology, 3, Geol. 2s Geology 111f, Ore Deposits, 3, Geol. 73f, 106w Metallurgy 12f, Ore-Dressing, 3, Phys. 5s, Geol. 25s Mining 40f, Mine Rescue, 1 week Mining 41f, Mining Methods, 5, Min. 33s Thesis, 8 Electives, 6

Second Quarter

Geology 92w, Paleontology, 3, Geol. 2s Geology 112w, Petroleum, 3, Geol. 111f Geology 137w, Testing Economic Materials, 5, Geol. 73f Geology 140w, Applied Petrography, 5, Geol. 111f, 13s Geology 166w, Mineralography, 6, Geol. 111f Metallurgy 13w, Ore-Dressing, 3, Met. 12f Mining 42w, Mine Management, 5, Min. 41f

Third Quarter

Geology 93s, Paleontology, 3, Geol. 2s Geology 113s, Problems in Ore Deposits, 4, Geol. 112w Geology 141s, Applied Petrography, 5, Geol. 111f, 13s Geology 167s, Mineralography, 6, Geol. 111f Metallurgy 17s, Ore-Dressing Lab., 6, Met. 13w Thesis, 10

FIELD WORK IN GEOLOGY

At the end of the sophomore year mining students are required to devote about three weeks to geologic mapping. This course usually comes after a seven-week course in surveying and the fields chosen are the Vermilion and Mesabi iron ranges of Minnesota. This work is intended to train the students in the interpretation of field relations and the preparation of geologic maps and cross sections.

The second field course in geology is required only of those students who are candidates for the engineer of mines (in geology) degree. The course begins early in May and is completed in June. The course requires altogether about six weeks' work, and the field chosen is the Black Hills region of South Dakota or some other western region. The expenses of the trip are estimated at \$225. A deposit of \$50 must be made before starting on the trip to cover lodging and necessary side trips. Any balance will be returned at the close of the work in the field. The student is trained in the interpretation of field data; in detailed mapping, underground and on the surface; in the preparation of geologic cross sections through mines; and he may gather material which will serve as a basis for future study in advanced courses the following year. The work conforms to the standards of official surveys as nearly as practicable. In preparation for the trip a lecture of one hour per week will be scheduled for part of the third quarter preceding the trip. At the close of the field season the students are expected to obtain positions with mining companies either as miners or as engineers, or if openings are available, they may enter geological surveys for the season's work.

Field work in geology for students having taken either of the above trips will reopen at the School of Mines, Tuesday, September 19, 1922. The final reports covering the field work must be prepared at the School of Mines under the direct supervision of the Department of Geology. These reports are to be turned in to the department on September 26.

Courses Leading to the Degree of Metallurgical Engineer JUNIOR YEAR

First Quarter

Geology 73f, Economic, 3, Geol. 28, 105f Mechanics 9f, Mechanics, 5, Math. 8s Mechanics 12f, Mine Plant, 6, Math. 8s Metallurgy 12f, Ore-Dressing, 3, Phys. 43s, Geol. 25s Metallurgy 14f, Ore-Dressing Lab., 4, Phys. 43s, Geol. 25s

Metallurgy 105f, Base Metals, 4, Met. 3f

Metallurgy 153f, Metallography, 7, Chem. 28w, Phys. 43s Mining 30f, First Aid, 1 week

Second Quarter

Mechanics 10w, Mechanics of Materials, 5, Mech. 9f

Mechanics 15w, Metallurgical Plant, 3, Mech. 12f

Metallurgy 13w, Ore-Dressing, 3, Met. 12f, 14f

Metallurgy 15w, Ore-Dressing Lab., 4, Met. 12f, 14f

Metallurgy 106w, Base Metals, 4, Met. 105f

Metallurgy 154w, Metallography, 7, Met. 153f

Mining Engineering 5w, Mine-Mapping, 6, Min. Eng. 4s

Third Quarter

Mechanics 11s, Mechanics of Materials, 5, Mech. 10w

Mechanics 16s, Metallurgical Plant, 3, Mech. 15w

Metallurgy 16s, Ore-Dressing Lab., 6, Met. 13w, 15w

Metallurgy 107s, Precious Metals, 4, Met. 106w

Metallurgy 155s, Metallography, 7, Met. 154w

Mining Engineering 6s, Mine-Mapping, 6, Min. Eng. 5w

Metallurgy 21s, Field Work in Metallurgy beginning about May 1, 10 days, satisfactory completion of junior year

Mining 34s, Field Work in Mine Plant and Mining beginning about May 1, 2 weeks, satisfactory completion of junior year

SENIOR YEAR

First Quarter

Electrical Engineering 41f, Electric Power, 5, Phys. 43s

Geology 111f, Ore Deposits, 3, Geol. 73f, 106w, or

Mechanics 18f, Engineering Construction, 8, Mech. 11s

Mechanics 17f, Water Power, 7, 11f

Metallurgy 6f, Ore-Testing, 2, Met. 107s

Metallurgy 7f, Ore-Testing Lab., 8, Met. 107s

Metallurgy 108f, Electrometallurgy, 3, Met. 107s

Metallurgy 18f, Thesis, 8

Mining 40f, Mine Rescue, I week

Second Quarter

Geology 112w, Petroleum, 3, Geol. 111f, or

Mechanics 19w, Mine Plant Design, 9, Mech. 18f

Metallurgy 8w, Special Problems in Ore-Testing, 4, Met. 107s

Metallurgy 10w, Advanced Metallurgy, 10, Met. 107s

Metallurgy 19w, Thesis, 18, Met. 18f

Metallurgy 164w, Advanced Metallography, 3, Met. 155s, or Geology 80w, Advanced Historical, 3, Geol. 73f, or Mining 42w, Mine Management, 5, Min. 41f.

COURSES OF STUDY

Third Quarter

Metallurgy 95, Special Problems in Ore-Testing, 8, Met. 1075 Metallurgy 115, Advanced Metallurgy, 10, Met. 1075 Metallurgy 205, Thesis, 18, Met. 19W Metallurgy 1655, Advanced Metallography, 3, Met. 1555, or Geology 1135, Problems in Ore Deposits, 4, Geol. 112w, or Mining 435, Mine Administration, 5, Min. 42W

DEPARTMENT OF METALLURGY

This department is well supplied with representative ores of all the most important metals, drawings of furnaces, models and samples of all the different furnace products. The lectures treat of all the principal methods now in use. The practical work consists in visits to smelting and refining works which are accessible. The work in metallurgy extends through three years.

ASSAYING

The lectures treat of, and describe, apparatus, reagents, assay furnaces, fuels, etc., in connection with this subject. The principles of assaying and sampling are fully explained. A collection of representative ores of various metals with a collection of corresponding slags is shown, and instruction is given as to nature and quality of fluxes. Special and rapid methods of testing slags and metallurgical products as employed in western smelting works are emphasized.

The laboratory course includes preparing and testing reagents, making cupels, etc., and assaying samples of ores, furnace and mill products, and bullion; different charges are tried and practical conclusions drawn.

Great importance is attached to the work in the laboratory. A large, well-ventilated furnace room in which are located muffle and crucible furnaces, and another room of similar dimensions equipped with desks, pulp and bead balances, afford accommodations to a large number of students. Ores of various metals of known value are given the students who are required to make up the necessary charges and submit their report in detail. This work is offered to students completing the necessary courses in mineralogy and chemistry.

ORE-DRESSING

The lectures and recitations in ore-dressing extend through the junior year, and comprise a detail study of ore-dressing and concentrating machinery, together with a study of typical combinations of dressing machines as found in the various mining districts of the United States. In connection with the theoretical work, the ore-dressing laboratory and testing plant of the school are utilized for illustration, and practical use of ore-dressing machinery.

ORE-TESTING

The lectures treat of the problems in ore-testing such as extraction and losses in roasting, concentration, and other milling operations. Both the ore-dressing laboratory and the Mines Experiment Station laboratory are available for working out practical problems. The Mines Experiment Station laboratory is maintained to aid the mining interests of the state of Minnesota in solving problems connected with concentration and conservation of the iron and manganiferous ores of the state.

The School of Mines laboratories therefore serve both educational and commercial needs.

Educational.—The student becomes familiar with the use of the various types of machines such as crushers, rolls, classifiers, concentration and flotation machinery.

Commercial.—The laboratories are used by the Mines Experiment Station to determine the best methods of treatment to produce a commercial product at the lowest cost. Recently additional commercial machinery has been obtained and new appliances are constantly being developed. Commercial samples varying from 500 pounds to carload lots can be treated by various methods.

FIELD WORK IN METALLURGY

At the end of the junior year students are required to study practical operations at one or more smelters and mills. This begins about May 1. The expenses for this trip are estimated at \$225. A deposit of \$50 must be made before starting on the trip to cover board and lodging and necessary side trips. Any balance will be returned at the close of the work in the field.

All notes, data, and sketches, necessary for a complete report on the field work, must be fully and neatly recorded in notebooks. These notebooks will be collected at the end of the trip and returned to the student at the reopening of field work at the school. In judging the character of the student's field work equal importance will be given to the completed report and to the original field notes. The department reserves the right to reject notebooks considered below standard.

Upon termination of the junior field work in metallurgy and two weeks in mining and mine plant (not later than June I), the members of the junior class who are candidates for the degree of metallurgical engineer are urged to spend at least six weeks in practical work in one or more of the smelters or mills, for which they may receive wages. The department will render all possible assistance in locating students in districts of their choice.

Field work will reopen at the School of Mines, Tuesday, September 19, 1922. No senior will be registered after that date. Registration will cover field work, electric power, and geology.

The final reports covering field work in metallurgy and mining must be prepared at the School of Mines under the direct supervision of the departments concerned. The program covering this work is as follows: metallurgy, September 19 to 26, inclusive; mining and mine plant, September 27 to October 10, inclusive. On October 10, all seniors who expect to graduate must register for the remaining subjects. Prior to this date the student must submit a typewritten report on field work fully illustrated with drawings to scale, made from the field sketches, covering metallurgical and milling operations, and details of plant and equipment. Final registration will not be allowed until after reports on field work are accepted. All final reports, therefore, must be presented on or before October 10. These reports shall become the property of the school.

METALLOGRAPHY

Courses in metallography are offered to candidates for the degree of metallurgical engineer in the School of Mines, to students in the colleges of Dentistry, Engineering and Architecture, Science, Literature, and the Arts, in the School of Chemistry, and in the Graduate School.

These courses deal with the study of metals and alloys. The lectures treat of, and describe, the apparatus used in connection with this subject, the method of preparing specimens, physical and metallographic principles involved, and the interpretation of the results of microscopic examination and thermal analysis. There is an elaborate file of references and abstracts relating to the whole field of metallography, furnishing up-to-date information on the various phases of the work. A collection of specimens, photomicrographs, and lantern slides covering wrought iron, low carbon structural, rail, and tool steels, brasses, bronzes, and other industrial alloys is available for study and comparison. The laboratory course includes the microscopic and pyrometric study of metals and alloys. The laboratories are equipped with grinding and polishing apparatus, microscopes, photomicrographic apparatus, vacuum electric furnace, carbon resistance furnaces, nichrome and platinum resistance furnaces of various designs, gas furnaces, heat-treating furnace, and pyrometers of the latest and improved types. There is a special darkroom for the preparation of photomicrographs.

DEPARTMENTAL STATEMENTS

EXPLANATION OF COURSE NUMBERS

The suffixes f, w, or s, indicate the quarter in which a course is offered, e.g., fall, winter, or spring quarters respectively. More than one suffix indicates that a course is offered in each of the corresponding quarters. No suffix indicates that the time of taking a course is to be arranged with the departments concerned.

All undergraduate courses are numbered from I to 100. All courses open to undergraduates and graduates are numbered from 101 to 200. Strictly graduate courses are numbered from 201 up.

CHEMISTRY

Professors Paul H. M.-P. Brinton, Charles F. Sidener; Associate Professor M. Cannon Sneed; Assistant Professors Isaac W. Geiger, Raymond E. Kirk; Instructors Norville C. Pervier, Landon A. Sarver.

COURSES

Lec. or Lab.

No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
4f	General Inorganic Chemistry	• 3	3	All fr.	H.S.Chem.
5W	General Inorganic Chemistry	• 3	3	All fr.	4f
14f	General Inorganic Chemistry	• 3	6	All fr.	
15W	General Inorganic Chemistry	• 3 -	6	All fr.	14f
16s	Qualitative Chemical Analysis	• 3	6	All fr.	5w or 15w
28w	Quantitative Chemical Analysis	í I	7	All soph.	16 s
123f	Adv. Analytical Chemistry	. I	7	Elective	28w
I24W	Adv. Analytical Chemistry	• I * '	7	Elective	28w

- 4f. GENERAL INORGANIC CHEMISTRY. A study of the general laws of chemistry and of the non-metals, the metals, and their compounds. MR. KIRK.
- 5W. GENERAL INORGANIC CHEMISTRY. A continuation of Course 4f. MR. KIRK.
- 14f. GENERAL INORGANIC CHEMISTRY. A study of the general laws of chemistry and of the non-metals, the metals, and their compounds. MR. PERVIER.
- 15W. GENERAL INORGANIC CHEMISTRY. A continuation of Course 14f. Mr. Pervier.
- 16s. QUALITATIVE ANALYSIS. Laboratory work in systematic qualitative analysis with lectures on solutions, ionization, chemical and physical equilibrium, oxidation and reduction, etc. Mr. KIRK, MR. PERVIER.
- 28w. QUANTITATIVE ANALYSIS. A short introductory course covering the general principles and methods of quantitative analysis, both gravimetric

and volumetric. Typical problems are assigned and attention given to proper laboratory practice. MR. BRINTON, MR. SIDENER, MR. SARVER.

- 123f. ADVANCED ANALYTICAL CHEMISTRY. Analytical methods for the determination of the common constituents of iron ore, iron, and steel are discussed and compared, with emphasis upon the general principles involved. Typical problems are assigned for laboratory practice. MR. SIDENER, MR. GEIGER, MR. SARVER.
- 124W. ADVANCED ANALYTICAL CHEMISTRY. A survey of the methods of analytical chemistry applied to the analysis of minerals and ores. Typical procedures for laboratory practice serve as a basis for discussion of more general methods. MR. BRINTON, MR. SIDENER, MR. GEIGER, MR. SARVER.

DRAWING AND DESCRIPTIVE GEOMETRY

Professor William H. Kirchner; Assistant Professor Howard D. Myers; Instructor Orrin W. Potter.

COURSES

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
11f	Engineering Drawing		10	All fr.	
12W	Engineering Drawing		8	All fr.	III
135	Engineering Drawing		8	All fr.	I2W
1,4f	Descriptive Geometry	. 3		All soph.	. 13s, Math. 5s
15W	Drafting		4	All soph.	14f

- **IIF.** ENGINEERING DRAWING. Sketching, lettering, representation, elements of drafting, details of machines and structures, interpretation of working drawings. MR. KIRCHNER, MR. POTTER.
- 12W. ENGINEERING DRAWING. Continuation of Course 11f. The elements of general drafting, mechanical drawing as a language. Lines, views, dimensions, standards, signs, abbreviations, and explanatory notes. MR. KIRCHNER, MR. POTTER.
- 13s. ENGINEERING DRAWING. Continuation of Course 12w. The elements of general drafting. Maps and sketches. Brush and pen conventions. MR. KIRCHNER, MR. POTTER.
- 14f. DESCRIPTIVE GEOMETRY. Projection; central and special cases, principles and application, representation of lines, planes, and solids, and of their relations; tangencies, intersections, and developments. Recitations, lectures, and solution of problems. MR. MYERS.
- 15w. DRAFTING. Graphics, machine drafting, and structural drafting. Instruction in drafting room methods. MR. MYERS.

ELECTRICAL ENGINEERING

Professor George D. Shepardson; Associate Professor William T. Ryan; Instructor George W. Swenson.

COURSE

			Lec. or	Lab.		
No.		Title	rec. hrs.	hrs.	Required of	Prereq. course
41f	Electric	Pówer	. 2	3	Sr.E.M.	Physics 43s

41f. ELECTRIC POWER. Elementary principles of continuous currents. Continuous current generators and motors. Elementary principles of alternating currents. Alternating current generators, transformers, and motors. Measurement of power. Elementary principles of transmission and distribution. Lectures, recitation, laboratory work. Mr. RYAN.

EXPERIMENTAL ENGINEERING

Professor FRANK B. ROWLEY; Associate Professor CHARLES F. SHOOP; Assistant Professor Burton J. Robertson; Instructor CHARLES BOEHN-LEIN.

COURSES

	m1.1	Lec. or			7
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
M.E. 84f	Elementary Laborator	у			1
	(General)		4	Jr. E.M.	With Mech. 12f
M.&M. 144w	Materials-Testing Labora	-			
	tory		4	Jr. E.M.	With Mech. 10w
M.E. 181w	Advanced Laboratory (Gen	1	4	Sr. E.M.	M.E. 84f
	eral)				

- M.E.84f. ELEMENTARY GENERAL LABORATORY. Calibration of thermometers, gages, weirs, nozzle orifices, and meters. Efficiency of machines, friction of belting, friction tests; burning point, chill point, viscosity and specific gravity of oils. Tests of water motor, rams, and pulsometers. Mr. Shoop.
- M.&M.144w. MATERIALS-TESTING LABORATORY. Investigation of physical properties of metals.and engineering materials: wood, cement, ropes, etc., supplemented by lectures and materials of construction and methods of testing. Mining and metallurgical engineers. MR. BOEHNLEIN.
- M.E.181w. Advanced General Laboratory. Indicator practice, valvesetting, separating and throttling calorimeters, tests of steam engines, gas engines, pumps, air compressors, blowers, turbines, boilers, and power plant. Mr. Rowley, Mr. Shoop.

GEOLOGY AND MINERALOGY

Professors William H. Emmons, Frank F. Grout, Clinton R. Stauffer; Assistant Professor Thomas M. Broderick; Instructors Ira S. Allison, John W., Gruner, George M. Schwartz, George A. Thiel, W. Courtney Werner.

DEPARTMENTAL STATEMENTS

· COURSES

	I	lec. or	Lab.		
No.	. Title r	ec. hrs.	hrs.	Required of	Prereq. courses
IW	General Geology	3		All soph.	105f
25	General Geology	3	4	All soph.	105f
195	Elem. of Paleontology	3		Elective	
23f	Elem. of Mineralogy	4	4	All fr.	
24W	Elem. of Mineralogy	2 ·	2	All fr.	23f
255	Elem. of Mineralogy	4	. 4	All fr.	24 W
61f	Blowpipe Analysis	2	4	Elective	258
65f	Crystallography	2	4	Elective	255
7.3f	Econ. Geology	3		All jr.	28, 105f
8ow	Advanced Hist. Geology	3		Sr.E.M.&Met.E.	73f
85s	Summer Field Work		2 wks.	All soph.	25
oit	Paleontology .*	3		Sr.E.M.(Geol.)	25
92W	Paleontology	3		Sr.E.M.(Geol.)	25
9.35	Paleontology	3		Sr.E.M.(Geol.)	25
IOIT	Principles of Stratigraphy	3		Elective	. 255
105f	Rock Study		4	All soph.	255
106w	Petrography		4	All soph.	105f
IIIf	Ore Deposits	3		All sr.	73f, 106w
II2W	Geology of Petroleum	3		All sr.	IIIf
II3S	Problems in Ore Deposits		· 4	All sr.	II2W
124W	Struct. & Metamorph. Geol	3		Jr.E.M. (Geol.)	73f, 105f
1255	Struct. & Metamorph. Geol	6		Jr.E.M. (Geol.)	73f, 105f
1 31f	Advanced Petrology	3	3	Jr.E.M. (Geol.)	25.106W
132W	Advanced Petrology	3	3	Jr.E.M. (Geol.)	25,106W
1335	Advanced Petrology	3	3	Jr.E.M.(Geol.)	25 106W
137 W	Testing Econ. Minerals	I	4	Sr.E.M.(Geol.)	73f
140W	Applied Petrography	J	4	Sr.E.M.(Geol.)	111f, 1135
1415	Applied Petrography	1	4	Sr.E.M.(Geol.)	111f, 1135
144W	Construction and Interpretation				
	of Geologic Maps		6	Jr.E.M.(Geol.)	73f
1455	Construction and Interpretation				
	of Geologic Maps		13	Jr.E.M.(Geol.)	73f
t 50S	Field Geology		6 wks.	Jr.E.M.(Geol.)	1255
151f	Advanced General Geology	3		Jr.E.M.(Geol.)	73f
152W	Advanced General Geology	3		Jr.E.M.(Geol.)	73f
1535	Advanced General Geology	3		Jr.E.M.(Geol.)	73f
166w	Mineralography		6	Sr.E.M.(Geol.)	IIIf
167s	Mineralography		6	Sr.E.M.(Geol.)	IIIf
246	Pre-Cambrian Geology	3	3	Elective	1255
247	Geol. and Exploration of Lake				
	Superior Region	3		Elective	125 S

- IW,25. GENERAL GEOLOGY. A synoptical treatment of materials of the earth, and of geologic processes. Physiographic, dynamic, structural, and historical geology. MR. THIEL.
- 195. ELEMENTS OF PALEONTOLOGY. An introduction to the study of fossil organisms. Lectures supplemented by field excursions. Mr. STAUFFER.
- 23f,24w,25s. ELEMENTS OF MINERALOGY. The crystal systems; morphological, physical, chemical characters of minerals; occurrence, genesis, and uses of minerals; classifications and description of common minerals; rock minerals, and common rocks. Determinative work in the laboratory, blowpipe analysis, sight identification. Mr. BRODERICK, Mr. GRUNER, MR. WERNER.

- 61f. BLOWPIPE ANALYSIS. The determination of minerals by systematic blowpipe analysis. Mr. BRODERICK, Mr. GRUNER.
- 65f. CRYSTALLOGRAPHY. Projection and geometric relations of crystal planes; crystal nomenclature; the relation of special properties to morphology. A study of crystal models, crystal-drawing, identification of minerals from crystal measurements, and mathematical calculation. MR. BRODERICK, MR. GRUNER.
- 73f. ECONOMIC GEOLOGY. Study of non-metallic minerals of economic value, and discussions of geologic guides to prospecting for these deposits. MR. SCHWARTZ.
- 80w. Advanced Historical Geology. The sequence of events in geologic history, of interest to the advanced student in mining. Mr. Stauffer, Mr. THIEL.
- 85s. FIELD WORK. About two weeks in June are spent in geologic mapping of selected areas in the iron district of Minnesota. Involves preparation of geologic maps and written reports. MR. GRUNER, MR. SCHWARTZ.
- 91f-92w-93s. PALEONTOLOGY. Index fossils of North America. A study of fossil forms with special reference to those of geologic importance; faunas and their correlation. MR. STAUFFER.
- 101f. PRINCIPLES OF STRATIGRAPHY. Origin and structure of sedimentary deposits; the interpretation of these in relation to paleography; field work in connection with Cambrian and Ordovician problems. MR. ALLISON.
- 105f. ROCK STUDY. The occurrence and genesis of igneous, sedimentary, and metamorphic rocks; their mineral and chemical composition; their structure, texture, and alteration. The classification and methods of identification and description of rocks. MR. GROUT, MR. BRODERICK, MR. THIEL.
- 106w. PETROGRAPHY. The identification and study of minerals and rocks by optical methods; the study of igneous rocks, crystalline schists, and metamorphic rocks. The origin and classification of rocks. Mr. GROUT, MR. BRODERICK, MR. GRUNER, MR. THIEL.
- IIIf. ORE DEPOSITS. The nature, distribution, and genesis of ore deposits of the United States; relations of ore deposits to geologic structure; the deformation and superficial alteration of ore deposits. MR. EMMONS.
- 112w. GEOLOGY OF PETROLEUM. The nature, origin, and accumulation of petroleum; discussion of the various oil fields of the world. Mr. Emmons.
- 1135. PROBLEMS IN ORE DEPOSITS. Field excursions, map work, lectures on field and laboratory methods. MR. EMMONS.

- 124W,125S. STRUCTURAL AND METAMORPHIC GEOLOGY. The conditions, processes, and results of metamorphism; structural features resulting from deformation under varying conditions of load. Mr. SCHWARTZ.
- 131f,132w,133s. ADVANCED PETROLOGY. Advanced optical methods. Criteria for rapid identification of minerals and rocks. The uses of schedules and tables. Standard rock types. Regional and genetic studies. Petrographic reports. MR. GROUT.
- 137W. TESTING ECONOMIC MINERALS. Methods of determining quality of mineral deposits, described and illustrated by laboratory tests of coal, clay, oil, building stone, and metallic ores. MR. GROUT.
- 140w,141s. APPLIED PETROGRAPHY. Determination of ores and gangue minerals. Microscopic studies of paragenesis of ores and other mineral associations. Practical problems in mining and geology settled by microscopic and optical examinations. Mr. GROUT.
- 144W,1455. CONSTRUCTION AND INTERPRETATION OF GEOLOGIC MAPS. Methods of geologic examination; problems in construction and interpretation of geologic maps and sections. Mr. Allison.
- 1505. FIELD GEOLOGY. Detailed, systematic work conforming with standards of official surveys. Preparation of geologic maps, structure sections, reports; paragenesis of ores and their relations to geologic structures. Field for 1922, Black Hills, South Dakota. Reports to be written week before college opens in fall. MR. EMMONS, MR. SCHWARTZ.
- 151f,152w,153s. Advanced General Geology. Geologic processes and their results; development of the North American continent. Mr. Stauffer.
- 166w,167s. MINERALOGRAPHY. Methods of studying opaque minerals and the application of the methods to problems in ore genesis and history. MR. BRODERICK, MR. SCHWARTZ.
- 246. PRE-CAMBRIAN GEOLOGY. The problems of pre-Cambrian correlation and structure; the pre-Cambrian stratigraphy of North America. (Given in alternate years.)
- 247. GEOLOGY AND EXPLORATION OF LAKE SUPERIOR REGION. The geology of the Lake Superior iron districts. Methods used in the exploration of iron ore; interpretation of drill cores; cartographic expressions of drill data; models of drilled areas. Principles of magnetic surveying.

GERMAN

Professor CARL SCHLENKER; Assistant Professors JAMES DAVIES, SAMUEL KROESCH.

No.	Title	Rec. hrs.	Required of	Prereq. courses
	Beginning	3	Jr.E.M.(Geol.)	
27f	Narrative	Prose 4	Elective	26 or 2 yrs.prep.
28w,29s*	Advanced	Chemical 3	Elective	' 27

* All quarters must be completed before credit is given in any one quarter.

- 24f,25w,26s. BEGINNING FOR MINERS. Pronunciation, grammar, conversation; selected readings in easy prose. MR. DAVIES.
- 27f. NARRATIVE PROSE. Reading, grammar review. MR. KROESCH.
- 28w,29s. CHEMICAL GERMAN. Selections from more difficult works on chemistry. Mr. SCHLENKER.

METALLURGY

Professors William R. Appleby, Peter Christianson, Levi B. Pease; Associate Professor Oscar E. Harder; Instructors Ralph L. Dowdell, Edwin H. Kersten, Clayton M. Reasoner, Elwyn L. Smith.

COURSES

		Lec.	Lab.		
No.	Title	hrs.	hrs.	Required of	Prerequisite course
IW	Assaying	4		All fr.	Chem. 14f, Geol. 23f
'2W	Assaying Lab		8	All fr.	Chem. 14f, Geol. 23f
3f	General Metallurgy	3		All soph.	1w, 2w, Chem. 16s
4 W	Metallurgy of Pig Iron	3		All soph.	3f
55	Met. Wrought Iron and				·
	Steel	3		All soph.	4W
6f	Ore-Testing	. 2		Sr.E.M.&Met.E.	1075
7f	Ore-Testing Lab		8	Sr.E.M.&Met.E.	1075
8w	Spec. Prob. in Ore-Test.		4	Sr.E.M.&Met.E.	1075
9s	Spec. Prob. in Ore-Test.		8	Sr.E.M.&Met.E.	1075
IOW	Advanced Metallurgy	4	6	Sr.Met.E.	1075
IIS	Advanced Metallurgy	4	6	Sr.Met.E.	1075
12f	Ore-Dressing	3		All jr.	Phys.43s,Geol.25s
I 3W	Ore-Dressing	3		All jr.	Met.12f
14f	Ore-Dressing Lab		4	Jr.Met.E.	Phys.43s,Geol.25s
15W	Ore-Dressing Lab		4	Jr.Met.E.	Met.12f,14f
16s	Ore-Dressing Lab		6	Jr.Met.E.	Met.13w,15w
175	Ore-Dressing Lab		6	Jr.E.M.&E.M.(Geol.)	Met.13w
18f	Thesis in Metallurgy		8	Sr.Met.E.	Satisfactory comple-
					tion of jr. year
19W	Thesis in Metallurgy		18	Sr.Met.E.	18f
20S	Thesis and Specifications		18	Sr.Met.E.	19W
215	Field Work in Met		**	Jr.Met.E.	Same as 18f
22f	Metallurgy	3		M.E.&Chem.Elective	Chem.8s or equiv.
23W	Metallurgy	3		E.E.&Chem.Elective	Chem.8s or equiv.
105f	Met. of Base Metals	4		Jr.E.M.&Met.E.	3f
ro6w	Met. of Base Metals	4		Jr.E.M.&Met.E.	₹05f
107S	Met. of Precious Metals.	4		Jr.E.M.&Met.E.	ıofw
108f	Electrometallurgy	3		Sr.Met.E.	1075
150f	Mphy. for Elec. Eng	2	3	Elective	
IJIW	Adv. Mphy. for Elec.				
	Eng	2	3	Elective	150f
153f	Mphy., Long Course	3	4	Jr.Met.E.	Chem.28w,Phys.43s
154W	Mphy., Long Course	3	4	Jr.Met.E.	153f
155S	Mphy., Long Course	3	4	Jr.Met.E.	154W
156f	Mphy. for Mech. Eng	2	3	Elective	
157W	Adv. Mphy. for Mech.				
	Eng	2	3	Elective	156f
-					

** Ten days.

DEPARTMENTAL STATEMENTS

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
1595	Dental Metallography	. 2		Elective	Chem. 21-22
160f	Mphy. for Chemists	. 2	2	Elective	Chem. 20
161 W	Adv. Mphy. for Chemists	. 2	2	Elective	160f
162S	Adv. Mphy. for Chemists	. 2	2	Elective	160f
163f	Adv. Metallography	• To be	ar.	Elective	151, 155, 157 or
					equiv.
164w	Adv. Metallography	. To be	ar.	Elective	
165s	Adv. Metallography	. To be	ar.	Elective	
201 f	Adv. Mphy. for Gr. Students	. To be	ar.	Elective	
202W	Adv. Mphy. for Gr. Students	. To be	ar.	Elective	
2035	Adv. Mphy. for Gr. Students	. To be	ar.	Elective	

- IW. ASSAYING. The determination of values of ores, metallurgical products by the fire method. Lectures and recitations. Mr. APPLEBY, Mr. CHRISTIANSON.
- 2w. Assay Laboratory. Practical determination of gold, silver, lead, and tin by the fire method. Mr. Christianson, Mr. Pease, Mr. Kersten, Mr. Smith.
- 3f. GENERAL METALLURGY. Combustion, fuels, refractory materials, furnaces and fluxes. Lectures and recitations. Mr. CHRISTIANSON.
- 4w. METALLURGY OF PIG IRON. General principles of iron blast furnace practice. Construction of furnace, handling of stock, and products, principles of regulation. Lectures and recitations. Mr. CHRISTIANSON.
- 55. METALLURGY OF WROUGHT IRON AND STEEL. General principles involved in the production of wrought iron and steel. Lectures and recitations. MR. CHRISTIANSON.
- 6f. ORE-TESTING. General principles involved in determining the best method of extraction, including amalgamation, concentration, cyanidation, roasting, etc. Lectures and recitations. MR. CHRISTIANSON.
- 7f. ORE-TESTING LABORATORY. Practical determination of extraction and distribution of values in mill and metallurgical products. Methods of calculation. Mr. CHRISTIANSON and assistants.
- 8w. SPECIAL PROBLEMS IN ORE-TESTING. Continuation of Course 7f. Practical determinations for regulating metallurgical operations. Mr. PEASE.
- 95. SPECIAL PROBLEMS IN ORE-TESTING. Continuation of Course 8w. Mr. PEASE.
- 10w. Advanced Metallurgy. Pyrometry, calorimetry, and metallurgical calculations to determine heat balance and heat distribution. Lectures and laboratory work. MR. CHRISTIANSON.
- **IIS.** ADVANCED METALLURGY. Design of furnaces, conferences, and laboratory work. MR. CHRISTIANSON.

- 12f. ORE-DRESSING. Crushing, sizing, classification, and concentration of ores. Lectures and recitations. MR. SMITH.
- 13W. ORE-DRESSING. Continuation of Course 12f. MR. SMITH.
- 14f. ORE-DRESSING LABORATORY. Practical examination of ores and the use of ore-dressing machinery. Mr. SMITH.
 - 15W. ORE-DRESSING LABORATORY. Practical problems in ore-dressing. MR. SMITH.
 - 16s. ORE-DRESSING LABORATORY. Continuation of Course 15w. MR. SMITH.
 - 175. ORE-DRESSING LABORATORY. Short course in the laboratory use of oredressing machinery. MR. SMITH.
 - 18f. THESIS IN METALLURGY. Conferences to select suitable problem together with preliminary laboratory work on problem selected. MR. CHRISTIANSON, MR. PEASE.
 - 19W. THESIS IN METALLURGY. Continuation of Course 18f. Mr. Christianson, Mr. Pease.
 - 205. THESIS AND SPECIFICATIONS. Completion of thesis including specifications covering installation of a plant. Mr. CHRISTIANSON, MR. PEASE.
 - 215. FIELD WORK IN METALLURGY. Study of metallurgical operations at smelters and mills. Detail reports are required covering plants visited. MR. CHRISTIANSON, MR. PEASE.
 - 22f. METALLURGY OF BASE METALS. Short course for mechanical engineers. Special consideration is given to the mechanical appliances. Lectures and recitations. Mr. CHRISTIANSON, Mr. PEASE.
 - 23W. METALLURGY OF BASE METALS. Short course for electrical engineers. Special consideration is given to electrical appliances. Lectures and recitations. Mr. CHRISTIANSON, Mr. PEASE.
 - 105f. METALLURGY OF BASE METALS. Lead, copper, zinc, and mercury. Consideration of smelting methods and principles involved in refining. Lectures and recitations. MR, PEASE.
 - 106w. Metallurgy of Base Metals. Continuation of Course 105f. Mr. Pease.
 - 1075. METALLURGY OF THE PRECIOUS METALS. Principles involved and methods used in the extraction of gold, silver, and other precious metals. Lectures and recitations. Mr. PEASE.
 - 108f. ELECTROMETALLURGY. Application of electricity to production of heat for smelting ores and refining metals. Costs of fuel and electricity for heating, relative efficiencies of electric and fuel furnaces. Construction of high temperature furnaces and commercial plants. MR. CHRISTIANSON.

- 150f. METALLOGRAPHY FOR ELECTRICAL ENGINEERS. Principles of metallography, including pyrometry, thermal analysis, constitution diagrams, microscopic and photomicrographic technique; study of typical alloys with special reference to electrical resistance, conductivity, magnets, etc. Laboratory work and demonstrations. MR. HARDER, MR. DOWDELL, MR. REASONER.
- 151W. ADVANCED METALLOGRAPHY FOR ELECTRICAL ENGINEERS. Continuation of 150. Study of iron and steel, alloy steels, metals and alloys used in electrical engineering practice. Special problems for outside reading and for research. Laboratory work. Mr. HARDER, MR. DOWDELL, MR. REASONER.
- 153f,154w,155s. METALLOGRAPHY. (Long course for metallurgical engineers.) Theory of metallic alloys. Metallographic technique. Properties of metals and alloys. Metallography of iron and steel and commercial alloys. Technical metallurgy. Laboratory work. MR. HARDER, MR. DOWDELL, MR. REASONER.
- 156f. METALLOGRAPHY FOR MECHANICAL ENGINEERS. Principles of metallography, including pyrometry, thermal analysis, constitution diagrams, microscopic annd photomicrographic technique; metallography and heat treatment of iron and steel. Laboratory work. Mr. HARDER, MR. Dowdell, Mr. REASONER.
- 157w. Advanced Metallography for Mechanical Engineers. Continuation of 156f. Metallography of alloy steels, tool steels, high speed tool steels, and important non-ferrous alloys; metallography applied to engineering practice and specifications. Outside reading and special reports. Laboratory work. Mr. HARDER, Mr. DOWDELL, Mr. REASONER.
- 1595. DENTAL METALLOGRAPHY. Study of the dental alloys from the standpoint of metallography. Lectures, recitations, and demonstrations, taking up the most important metals and alloys, with special reference to those used in dentistry. MR. HARDER, MR. DOWDELL, MR. REASONER.
- 160f. METALLOGRAPHY FOR CHEMICAL STUDENTS. Metallography, including constitution diagrams, preparation and standardization of thermocouples, preparation and thermal analysis of alloys, their microscopic examination and making photomicrographs; typical alloy systems such as ironcarbon (steel and cast iron); some non-ferrous alloys. Laboratory work. Mr. HARDER, Mr. DOWDELL.
- 161w. Advanced Metallography for Chemical Students. Metallography and heat treatment of iron and steel, including alloy steels, commercial uses of various steels, and engineering specifications. Laboratory work. Mr. Harder, Mr. Dowdell.
- 1625. Advanced Metallography for Chemical Students. Metallography of the non-ferrous metals with a study of the constitution diagrams, properties, and uses of important commercial alloys. Laboratory work. Mr. Harder, Mr. Dowdell.

- 163f,164w,165s. ADVANCED METALLOGRAPHY. Technical and scientific research. The study of steel rails, automobile and locomotive parts, tool steels, etc. Special problems in metallography with outside reading. Seminar work on the recent advances in metallography. Mr. HARDER, Mr. DowDell.
- 2011,202W,203S. ADVANCED METALLOGRAPHY FOR GRADUATE STUDENTS. Intended primarily for research work. MR. HARDER.

MILITARY SCIENCE AND TACTICS

Professor GIRARD STURTEVANT, Colonel, Infantry; Assistant Professors JAMES E. WARE, Lieutenant Colonel, Retired; HENRY H. RUTHERFORD, Lieutenant Colonel, Medical Corps: LAURENCE T. WALKER, Major, Coast Artillery Corps; LEE R. WATROUS, JR., Major, Coast Artillery Corps; FREDERICK R. WUNDERLICH, Major, Dental Corps; Edward G. SHERBURNE, Major, Infantry; JAMES E. WATSON, Captain, Signal Corps; NEWTON W. SPEECE, Captain, Infantry; ANDREW C. TYCHSEN, Captain, Infantry; RUSSELL C. THROCKMORTON, Captain, Infantry; LEO J. FARRELL, Captain, Infantry; HAL M. Rose, Captain, Cavalry; Instructors JOSEPH HAVLICEK, Regimental Commissary Sergeant, Retired: CARL JENSEN, Regimental Supply Sergeant, Retired: JOHN MCWILLIAMS, Ist Sergeant, Retired; HENRY DAHL, Ist Sergeant, Retired; HARRY E. STRIDER, Technical Sergeant, Signal Corps; ALFRED BRANDT, Technical Sergeant, Infantry; AUBREY DUNKUM, Staff Sergeant, Coast Artillery Corps; CLARENCE E. LANGE, Sergeant, Field Artillery; JOE WEIR, Sergeant, Infantry; EDMUND T. MCCANN, Sergeant, Infantry; HENRY W. BROWN, Sergeant, Coast Artillery Corps; EARL J. BLONSCHINE, Private, 1st Class, Coast Artillery Corps.

00,010			
Title	Hrs.	Required of	Prereq. courses
First-year Basic Course R.O.T.C	3	†All fr.	None
· · · · · · · · · · · · · · · · · · ·			
	3	*Soph.	I
·	3	Soph	г
	Ŭ		
Signal Corps	3	Soph	50 I.
	Title First-year Basic Course R.O.T.C., Second-year Basic Course R.O.T.C., Infantry Second-year Basic Course R.O.T.C. Coast Artillery Second-year Basic Course R.O.T.C.,	First-year Basic Course R.O.T.C., 3 Second-year Basic Course R.O.T.C., 3 Infantry 3 Second-year Basic Course R.O.T.C. 3 Coast Artillery 3 Second-year Basic Course R.O.T.C., 3	TitleHrs.Required ofFirst-year Basic Course R.O.T.C., Second-year Basic Course R.O.T.C., Infantry3†All fr.Second-year Basic Course R.O.T.C. Coast Artillery3*Soph.Second-year Basic Course R.O.T.C., Second-year Basic Course R.O.T.C.,3Soph

COURSES

* Work in military science and tactics for sophomores will open on Friday, September 15, at 8:30 a.m., and continue for ten days. Satisfactory completion of Course 2a, 2b, or 2c at that time is required of all sophomores. This course applies only to sophomores who are required to leave the following May 1 for field work.

† Must be legally eligible for enrolment in Reserve Officers' Training Corps.

MINE PLANT AND MECHANICS

Professor Elting H. Comstock; Assistant Professors Anders J. Carlson, James C. Sanderson.

C			

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
If	Algebra and Solid Geometry	. 6		B fr.	
2f	Algebra	. 6		A fr.	
35	Algebra	• 4		B fr.	ı f
4W	Trigonometry	. 6		All fr.	
55	Analytical Geometry	. 6	••	All fr.	4W
6f	Calculus	• 4		All soph.	55
7W	Cálculus	• 3		All soph.	Ģf
8s	Calculus	. 6		All soph.	7 W
9f	Mechanics	• 5		Jr.E.M.&Met.E.	8s
IOW	Mechanics of Materials	. 5		Jr.E.M.&Met.E.	9f
IIS	Mechanics of Materials	• 5		Jr.E.M.&Met.E.	IOW
12f	Mine Plant	. 6	•• .	Jr.E.M.&Met.E.	8s
I3W	Mine Plant	. 6		Jr.E.M.	12f
I4S	Mine Plant	. 6		Jr.E.M.	13W
15W	Metallurgical Plant	. 3		Jr.Met.E.	12f
16s	Metallurgical Plant	. 3		Jr.Met.E.	15W
17f	Hydraulics and Water Power	• 5	2	Sr.E.M.&.Met.E	. IIS
18f	Engineering Construction		8	Sr.E.M.	IIS
19W	Mine Plant Design		9	Sr.E.M.	18f .
2 05	Mine Plant Design	• ••	I 2	Sr.E.M.	19W

- If. ALGEBRA AND SOLID GEOMETRY. Equations, involution and evolution, theory of exponents, surds, quadratic equation, theory of logarithms, determinants. Demonstrations of most important theorems of solid geometry. Volumes, approximate volumes, prismoidal formula, etc. MR. SANDERSON.
- 2f. ALGEBRA. Functions, functional notation, factor and remainder theorems, factors and values of functions, development of functions, progressions, series, theory of equations, permutations and combinations, theory of logarithms, determinants. MR. COMSTOCK, MR. SANDERSON.
- 35. ALGEBRA. Continuation of Course I. Functions, functional notation, factor and remainder theorems, factors and values of functions, development of functions, progressions, series, theory of equations, permutations and combinations. MR. SANDERSON.
- 4w. TRIGONOMETRY. Trigonometric ratios, right triangles, definitions of trigonometric functions, analytic relations, trigonometric equations, etc., solution of spherical triangles. Mr. COMSTOCK, Mr. SANDERSON.
- 55. ANALYTICAL GEOMETRY. Systems of coördinates, loci, equations, properties of straight line, transformation of coördinates, equations and properties of conics, equations of second degree, higher plane curves, space coördinates, point, plane, quadric surfaces, etc., empirical equations, graphic algebra. MR. SANDERSON.

- 6f.7w.8s. CALCULUS. Differentiation, elementary forms, geometric applications, rates, successive differentiation, maxima and minima, expansion of functions, intermediate forms, partial derivatives, change of variable, elementary integration, undetermined coefficients, rationalization, formulas of reduction, some differential equations of mechanics. Mr. SANDERSON.
- 9f. MECHANICS. Composition and resolution of forces, laws of equilibrium, practical applications, rectilinear motion, circular motion, curvilinear motion in general, dynamics of rigid bodies, impact, work, and energy. MR. CARLSON.
- IOW,IIS. MECHANICS OF MATERIALS. Mechanical and elastic properties of materials of construction; beams, columns, shafts, hollow cylinders and spheres, rollers, plates; theory of internal stress; reinforced concrete. MR. CARLSON.
- 12f,13w,14s. MINE PLANT. Discussion of the machinery and appurtenances employed in the equipment of mines. Air compression, rock drills, mechanical features of hoisting, pumping, ventilation, underground transportation. Electricity applied to mining. Mr. COMSTOCK.
- 15w,16s. METALLURGICAL PLANT. Power, air, and water supply for metallurgical plants. Mr. Comstock.
- 17f. HYDRAULICS AND WATER POWER. Laws of the equilibrium, pressure and flow of liquids, hydrographs and mass diagrams, estimate of power to be developed at a power site, design of dams and hydroelectric plants, theory of water wheels and turbines, speed control, power house equipment, transmission. MR. CARLSON.
- 18f. ENGINEERING CONSTRUCTION. Theory of structures, loading, analytic and graphic resolution of stresses in framed structures, stresses in mining structures, design of mining structures. MR. CARLSON, MR. HEILIG.
- 19w,20s. MINE PLANT DESIGN. A study of power possibilities, costs, etc., and designs of a power plant, surface equipment, and structures for a mine. Mr. COMSTOCK, Mr. HEILIG.

MINING

Associate Professor Walter H. Parker; Instructor Louis S. Heilig.

COURSES

	L	ec. or	Lab.		
No.	· Title r	ec. hrs.	hrs.	Required of	Prerequisite courses
215	Introductory Mining	• 4	• •	Jr.E.M.&E.M.(Geol.)	31f
30f	First Aid		*	Jr.E.M.&E.M.(Geol.)	215
31f	Exploration	. 5		All soph.	
32W	Tunneling	. 5		All jr.	

DEPARTMENTAL STATEMENTS

335	Mining Methods	5		Jr.E.M.&E.M.(Geol.)	32W
348	Practical Mining	•••	2 wks.	Jr.E.M.& Met.E.	Satisfactory comple- tion of junior yr.
40f	Mine Rescue		*	All sr.	
41f	Mining Methods	5		Sr.E.M.&E.M.(Geol.)	335
42W	Mine Management	5		Sr.E.M.&E.M.(Geol.)	41f
438	Mine Administration	5		Sr.E.M.&Met.E.	42W
44f	Thesis		2	Sr.E.M.	338
45W	Thesis		12	Sr.E.M.	44f
468	Thesis		12	Sr.E.M.	45W

* 15 hours a week.

- 215. INTRODUCTORY MINING. Introductory mining course, preparatory to sophomore field trip. Mr. HEILIG.
- 30f. FIRST AID. Course in first aid to the injured, given by the staff of the United States Bureau of Mines car.
- 31f. EXPLORATION. Occurrence of ore bodies, prospecting, exploration, boring, explosives, drilling, and blasting. MR. PARKER.
- 32w. TUNNELING. Tunneling, drifting, shaft-sinking, raising, and mining methods. MR. PARKER.
- 33s. MINING METHODS. Underground mining methods and support of underground excavations. MR. PARKER.
- 34s. PRACTICAL MINING. Study of mining operations. Mine plant and mining work in one or more mining camps. Mr. PARKER, MR. COM-STOCK.
- 40f. MINE RESCUE. Course in mine rescue, given by the staff of the United States Bureau of Mines car.
- 41f. MINING METHODS. Coal mining, open-pit work, quarrying, placer mining, hydraulic mining, and dredging. MR. PARKER.
- 42w. MINE MANAGEMENT. Mine drainage, mine ventilation, mine transportation, mine sanitation, mine hygiene, cost accounting, and mine examination. Mr. PARKER.
- 435. MINE ADMINISTRATION. Course in mining law, mine management, and economics of mining. MR. PARKER.
- 44f. THESIS. Preparatory work on the mining thesis. MR. PARKER. MR. HEILIG.
- 45w. THESIS. Preparation of an original thesis on some mining project, covering the exploration and development of a mining property. MR. PARKER, MR. HEILIG.
- 46s. THESIS. Completion of thesis project. MR. PARKER, MR. HEILIG.

MINING ENGINEERING

Professor Edwin M. Lambert.

COURSES.

		Lec. or	Lab.		
No.	Title	rec. hrs.	hrs.	Required of	Prereq. courses
If.	Mine-Surveying	. 3 :		All soph.	Math. 4w
2W	Mine-Surveying	• 3		All soph.	· If
35	Mine-Surveying	• 3	4	All soph.	2W '
45	Field Work	7	wks.	All soph.	3s
5 W.	Mine-Mapping	• • • •	6	All jr.	4S
6s	Mine-Mapping	• ••	6	Jr.E.M.&Met.F	C.5w

- If-2w-3s. MINE-SURVEYING. Theory and problems in mine-surveying including land subdivision, stadia measurements, triangulation, railroad curves and cross sections, computation of areas by coördinates; differential leveling, topographic map-reading, solar observations, shaft plumbing, underground traversing and leveling. MR. LAMBERT.
- 45. FIELD WORK. Practice in general plane surveying during the month of May. Practice in underground surveying during the first three weeks of June. This work is given on the iron ranges of Minnesota. MR. LAMBERT, MR. CARLSON, MR. HEILIG.
- 5w-6s. MINE-MAPPING. Mine-mapping in accordance with prevalent practice in mining districts. Ore and stripping estimates and mine maps based on Mesabi Range practice. Mr. HEILIG.

PHYSICS

Professors HENRY A. ERIKSON, ANTHONY ZELENY; Assistant Professor LOUALLEN F. MILLER.

COURSES

No.	Title		Lec. or tec. hrs.		Required of	Prereq. courses
3f	Elements of Mechanics		. 3	·	All soph.	Math. 5s
4f	Mechanics Laboratory		· ••	2	All soph.	With 3f
23W	Heat	· · ·	• 3		All soph.	3f
24W	Heat Laboratory	• • •	¹	2	All. soph.	4f and with 23w
438	Magnetism and Electricity		• 3		All soph.	3f
44S	Magnetism and Electricity La	b		2	All soph.	4f and with 43s

- 3f. ELEMENTS OF MECHANICS AND SOUND. Mechanics of solids, fluids, wave motion, and sound. A study of the simpler fundamental principles. First part of a general Course 3, 23, 33, 43. Course 4 should be taken in conjunction with this course. MR. ERIKSON, MR. MILLER.
- 4f. ELEMENTS OF MECHANICS AND SOUND LABORATORY. Measurements in the mechanics of solids, fluids, wave motion, and sound; the laboratory part supplementing Course 3. One two-hour session in the laboratory a week. MR. ERIKSON, MR. MILLER.

- 23w. HEAT. A study of the principles underlying heat phenomena. Course 24 should be taken in conjunction with this course. MR. MILLER.
- 24W. HEAT LABORATORY. The laboratory part supplementing Course 23. One two-hour session in the laboratory a week. Mr. MILLER.
- 435. MAGNETISM AND ELECTRICITY. A study of the principles underlying magnetic and electric phenomena. Course 44 should be taken in conjunction with this course. MR. ZELENY, MR. MILLER.
- 445. ELECTRICAL LABORATORY. The laboratory part supplementing Course 43. One two-hour session in the laboratory a week. MR. ZELENY, MR. MILLER.

ROMANCE LANGUAGES

Professors Everett W. Olmsted, Irville C. LeCompte, Colbert Searles; Associate Professor Ruth S. Phelps.

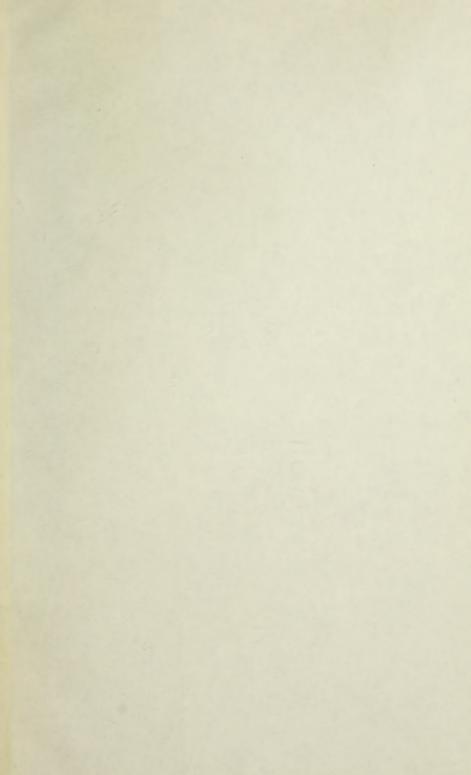
. COURSES

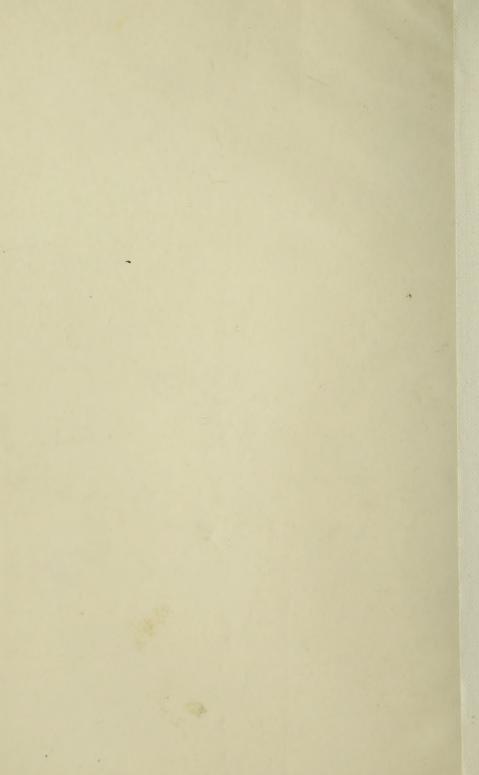
No.	Title Rec	. hrs.	Required of	Prereq.courses
I-2 [*]	Beginning French	5	Jr.E.M.(Geol.)	
3-4	Intermediate French	5	Elective	I-2
21-22-23*	Survey French Lit	3	Elective	3-4
I-2*	Beginning Spanish	5	Jr.E.M.(Geol.)	
3-4	Intermediate Spanish	5	Elective	I-2
65-66-67*	Spanish Literature	3	Elective	3-4

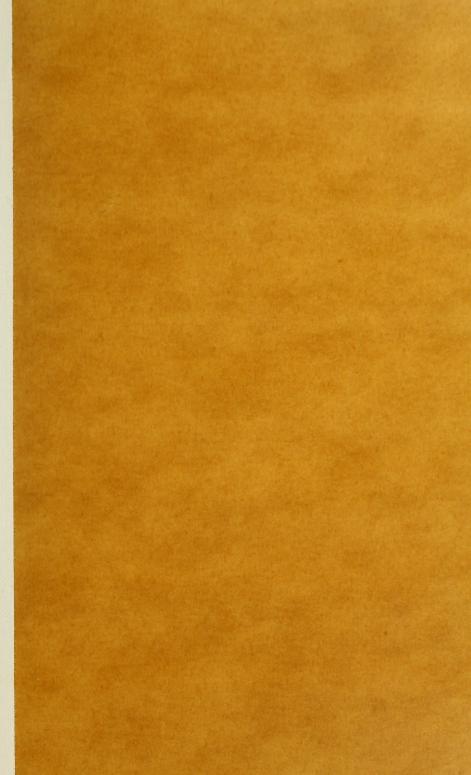
* All quarters must be completed before credit is given in any one quarter. Note: Beginning and intermediate courses are offered every quarter.

I-2. BEGINNING FRENCH.

3-4. INTERMEDIATE FRENCH.


21-22-23. GENERAL SURVEY OF FRENCH LITERATURE. Outline of French literature from 1600 to the present. Reading of representative texts.


I-2. BEGINNING SPANISH.


3-4. INTERMEDIATE SPANISH.

65-66-67. SPANISH LITERATURE. Outline of Spanish literature from 1500 to the present. Reading of representative texts.

• • •

